11.6% Efficient Pure Sulfide Cu(In,Ga)S2 Solar Cell through a Cu-Deficient and KCN-Free Process

[1]  S. Ishizuka,et al.  Large open‐circuit voltage boosting of pure sulfide chalcopyrite Cu(In,Ga)S2 prepared using Cu‐deficient metal precursors , 2020, Progress in Photovoltaics: Research and Applications.

[2]  B. Rech,et al.  On the Relation between the Open‐Circuit Voltage and Quasi‐Fermi Level Splitting in Efficient Perovskite Solar Cells , 2019, Advanced Energy Materials.

[3]  S. Siebentritt Chalcopyrite compound semiconductors for thin film solar cells , 2017 .

[4]  M. Green,et al.  Nanoscale Microstructure and Chemistry of Cu2ZnSnS4/CdS Interface in Kesterite Cu2ZnSnS4 Solar Cells , 2016 .

[5]  Yun Sun,et al.  10% Efficiency Cu2ZnSn(S,Se)4 thin film solar cells fabricated by magnetron sputtering with enlarged depletion region width , 2016 .

[6]  R. Klenk,et al.  Time‐resolved investigation of Cu(In,Ga)Se2 growth and Ga gradient formation during fast selenisation of metallic precursors , 2015 .

[7]  M. Kanzari,et al.  Comparative study of structural and morphological properties of nanostructured CuIn 2n+1 S 3n+2 (n = 0, 1 and 2) thin films produced by oblique angle deposition , 2013 .

[8]  R. Klenk,et al.  CdS/Cu(In,Ga)S2 based solar cells with efficiencies reaching 12.9% prepared by a rapid thermal process , 2013 .

[9]  R. Klenk,et al.  Influence of precursor stacking on the absorber growth in Cu(In,Ga)S2 based solar cells prepared by a rapid thermal process , 2011 .

[10]  P. Dasgupta,et al.  Recent developments in cyanide detection: a review. , 2010, Analytica chimica acta.

[11]  T. Hsieh,et al.  Effects of residual copper selenide on CuInGaSe2 solar cells , 2011, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[12]  A. Forchel,et al.  Minority-carrier lifetime and efficiency of Cu(In,Ga)Se2 solar cells , 1998 .