Segmentation of Pedestrians with Confidence Level Computation

[1]  Jenq-Neng Hwang,et al.  Adaptive particle sampling and adaptive appearance for multiple video object tracking , 2009, Signal Process..

[2]  Lei Huang,et al.  Crowd Estimation Using Multi-Scale Local Texture Analysis and Confidence-Based Soft Classification , 2008, 2008 Second International Symposium on Intelligent Information Technology Application.

[3]  Jiaheng Cao,et al.  Scale Space Histogram of Oriented Gradients for Human Detection , 2008, 2008 International Symposium on Information Science and Engineering.

[4]  S. Paisitkriangkrai,et al.  Performance evaluation of local features in human classification and detection , 2008 .

[5]  Weiwei Zhang,et al.  Cat Head Detection - How to Effectively Exploit Shape and Texture Features , 2008, ECCV.

[6]  Xiaoping Chen,et al.  A robust method for detecting and counting people , 2008, 2008 International Conference on Audio, Language and Image Processing.

[7]  Nuno Vasconcelos,et al.  Privacy preserving crowd monitoring: Counting people without people models or tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Fernando Boto,et al.  Real-Time People Counting Using Multiple Lines , 2008, 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services.

[9]  Osama Masoud,et al.  Estimating pedestrian counts in groups , 2008, Comput. Vis. Image Underst..

[10]  Visvanathan Ramesh,et al.  Fast Crowd Segmentation Using Shape Indexing , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[11]  Ramakant Nevatia,et al.  Detection and Tracking of Multiple, Partially Occluded Humans by Bayesian Combination of Edgelet based Part Detectors , 2007, International Journal of Computer Vision.

[12]  Mubarak Shah,et al.  A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Dariu Gavrila,et al.  An Experimental Study on Pedestrian Classification , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[15]  Serge J. Belongie,et al.  Counting Crowded Moving Objects , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[16]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[17]  Peter H. Tu,et al.  Detecting and counting people in surveillance applications , 2005, IEEE Conference on Advanced Video and Signal Based Surveillance, 2005..

[18]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[19]  Rama Chellappa,et al.  Visual tracking and recognition using appearance-adaptive models in particle filters , 2004, IEEE Transactions on Image Processing.

[20]  Derek R. Magee,et al.  Tracking multiple vehicles using foreground, background and motion models , 2004, Image Vis. Comput..

[21]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[22]  Emmanuel J. Candès,et al.  What is...a Curvelet , 2003 .

[23]  Leonidas J. Guibas,et al.  Counting people in crowds with a real-time network of simple image sensors , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[24]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2003, International Journal of Computer Vision.

[25]  Ramakant Nevatia,et al.  Bayesian human segmentation in crowded situations , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[26]  Luc Van Gool,et al.  An adaptive color-based particle filter , 2003, Image Vis. Comput..

[27]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[28]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[29]  David A. Forsyth,et al.  Probabilistic Methods for Finding People , 2001, International Journal of Computer Vision.

[30]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[33]  Tommy W. S. Chow,et al.  A neural-based crowd estimation by hybrid global learning algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[34]  Ramin Zabih,et al.  Counting people from multiple cameras , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[35]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[36]  T. J. Stonham,et al.  A system for counting people in video images using neural networks to identify the background scene , 1996, Pattern Recognit..

[37]  H. Grabner,et al.  Is Pedestrian Detection Really a Hard Task ? ∗ , 2007 .