Commutative group codes in ℝ4, ℝ6, ℝ8 and ℝ16 - Approaching the bound

Abstract Spherical codes in even dimensions n = 2 m generated by a commutative group of orthogonal matrices can be determined by a quotient of m -dimensional lattices when the sublattice has an orthogonal basis. We discuss here the existence of orthogonal sublattices of the lattices A 2 , D 3 , D 4 and E 8 , which have the best packing density in their dimensions, in order to generate families of commutative group codes approaching the bound presented in Siqueira and Costa (2008)  [14] .

[1]  Rogério M. Siqueira,et al.  Flat tori, lattices and bounds for commutative group codes , 2008, Des. Codes Cryptogr..

[2]  Hans-Andrea Loeliger,et al.  Signal sets matched to groups , 1991, IEEE Trans. Inf. Theory.

[3]  Robin Chapman,et al.  Double circulant constructions of the Leech lattice , 2000, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[4]  F. R. Gantmakher The Theory of Matrices , 1984 .

[5]  Rogério M. Siqueira,et al.  Optimum commutative group codes , 2012, Des. Codes Cryptogr..

[6]  Sueli I. Rodrigues Costa,et al.  Curves on a sphere, shift-map dynamics, and error control for continuous alphabet sources , 2003, IEEE Transactions on Information Theory.

[7]  John C. Baez,et al.  The Octonions , 2001 .

[8]  Sueli I. Rodrigues Costa,et al.  Spherical codes on torus layers , 2009, 2009 IEEE International Symposium on Information Theory.

[9]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[10]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[11]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[12]  Shafi Goldwasser,et al.  Complexity of lattice problems , 2002 .

[13]  Ian F. Blake,et al.  On the trellis complexity of root lattices and their duals , 1999, IEEE Trans. Inf. Theory.

[14]  N. J. A. Sloane,et al.  On sublattices of the hexagonal lattice , 1997, Discret. Math..

[15]  E. Biglieri,et al.  Cyclic-group codes for the Gaussian channel , 1976 .

[16]  Sueli I. Rodrigues Costa,et al.  Graphs, tessellations, and perfect codes on flat tori , 2004, IEEE Transactions on Information Theory.

[17]  Frank R. Kschischang,et al.  Trellis detection for random lattices , 2011, 2011 8th International Symposium on Wireless Communication Systems.

[18]  Ezio Biglieri,et al.  Cyclic-group codes for the Gaussian channel (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[19]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[20]  I. Blake,et al.  Group Codes for the Gaussian Channel , 1975 .