Recursive Schur Decomposition

In this article, we present a parallel recursive algorithm based on multi-level domain decomposition that can be used as a precondtioner to a Krylov subspace method to solve sparse linear systems of equations arising from the discretization of partial differential equations (PDEs). We tested the effectiveness of the algorithm on several PDEs using different number of sub-domains (ranging from 8 to 32768) and various problem sizes (ranging from about 2000 to over a billion degrees of freedom). We report the results from these tests; the results show that the algorithm scales very well with the number of sub-domains.

[1]  Yousef Saad,et al.  A Parallel Multistage ILU Factorization Based on a Hierarchical Graph Decomposition , 2006, SIAM J. Sci. Comput..

[2]  Tarek P. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations , 2008, Lecture Notes in Computational Science and Engineering.

[3]  Bobby Philip,et al.  Adaptive algebraic smoothers , 2012, J. Comput. Appl. Math..

[4]  M. Païdoussis Fluid-Structure Interactions: Slender Structures and Axial Flow , 2014 .

[5]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[6]  George Em Karniadakis,et al.  A Scalable Domain Decomposition Method for Ultra-Parallel Arterial Flow Simulations † , 2008 .

[7]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[8]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[9]  J. Mandel Balancing domain decomposition , 1993 .

[10]  Jung Ho Lee,et al.  The AMP (Advanced MultiPhysics) Nuclear Fuel Performance code , 2012 .

[11]  Daniel D. Joseph,et al.  CORE-ANNULAR FLOWS , 1997 .

[12]  D. Olander Nuclear Fuels: Present and Future , 2009 .

[13]  Pascal Hénon,et al.  A Parallel Direct/Iterative Solver Based on a Schur Complement Approach , 2008, 2008 11th IEEE International Conference on Computational Science and Engineering.

[14]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[15]  A. Sameh,et al.  A nested iterative scheme for computation of incompressible flows in long domains , 2008 .

[16]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[17]  Xiao-Ping Zhang,et al.  Flexible AC Transmission Systems: Modelling and Control , 2006 .

[18]  Donald R. Olander,et al.  Fundamental Aspects of Nuclear Reactor Fuel Elements , 1976 .

[19]  Clark R. Dohrmann,et al.  An approximate BDDC preconditioner , 2007, Numer. Linear Algebra Appl..

[20]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .