Recent advances to model anisotropic space–time data

Building new and flexible classes of nonseparable spatio-temporal covariances and variograms has resulted a key point of research in the last years. The goal of this paper is to present an up-to-date overview of recent spatio-temporal covariance models taking into account the problem of spatial anisotropy. The resulting structures are proved to have certain interesting mathematical properties, together with a considerable applicability. In particular, we focus on the problem of modelling anisotropy through isotropy within components. We present the Bernstein class, and a generalisation of Gneiting’s approach (2002a) to obtain new classes of space–time covariance functions which are spatially anisotropic. We also discuss some methods for building covariance functions that attain negative values. We finally present several differentiation and integration operators acting on particular space–time covariance classes.

[1]  Donato Posa,et al.  Product‐sum covariance for space‐time modeling: an environmental application , 2001 .

[2]  J. Mateu,et al.  Nonseparable stationary anisotropic space–time covariance functions , 2006 .

[3]  G. Matheron Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .

[4]  Jorge Mateu,et al.  Covariance functions that are stationary or nonstationary in space and stationary in time , 2007 .

[5]  Wenceslao González-Manteiga,et al.  Flexible spatio-temporal stationary variogram models , 2003, Stat. Comput..

[6]  J. Hart Central Tendency in Areal Distributions , 1954 .

[7]  Subhash R. Lele,et al.  A composite likelihood approach to semivariogram estimation , 1999 .

[8]  C. Berg,et al.  Harmonic Analysis on Semigroups , 1984 .

[9]  Jorge Mateu,et al.  La descente et la montée étendues: the spatially d-anisotropic and the spatio-temporal case , 2007 .

[10]  P. Guttorp,et al.  Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry , 2007 .

[11]  Christian Berg,et al.  Potential Theory on Locally Compact Abelian Groups , 1975 .

[12]  Dionissios T. Hristopulos,et al.  Methods for generating non-separable spatiotemporal covariance models with potential environmental applications , 2004 .

[13]  M. Stein Space–Time Covariance Functions , 2005 .

[14]  M. Fuentes Spectral methods for nonstationary spatial processes , 2002 .

[15]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[16]  Richard H. Jones,et al.  Models for Continuous Stationary Space-Time Processes , 1997 .

[17]  R. J. Martin,et al.  Testing axial symmetry and separability of lattice processes , 2005 .

[18]  Edward J. Powers,et al.  Space/time statistics of the turbulence in a tokamak edge plasma , 1984 .

[19]  S. Bochner Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse , 1933 .

[20]  Georg A. Janauer,et al.  Is what has been measured of any direct relevance to the success of the macrophyte in its particular environment , 2001 .

[21]  Chunsheng Ma,et al.  Families of spatio-temporal stationary covariance models , 2003 .

[22]  Dale L. Zimmerman,et al.  Testing for directional symmetry in spatial dependence using the periodogram , 2005 .

[23]  S. Orszag,et al.  Space‐time correlations in turbulence: Kinematical versus dynamical effects , 1989 .

[24]  Timothy G. Gregoire,et al.  Modelling Longitudinal and Spatially Correlated Data , 1997 .

[25]  W. Feller,et al.  An Introduction to Probability Theory and its Applications, Vol. II , 1967 .

[26]  Roussos Dimitrakopoulos,et al.  Spatiotemporal Modelling: Covariances and Ordinary Kriging Systems , 1994 .

[27]  Eric R. Ziegel,et al.  Geostatistics for the Next Century , 1994 .

[28]  G. Matheron Principles of geostatistics , 1963 .

[29]  Chunsheng Ma,et al.  Spatio-Temporal Covariance Functions Generated by Mixtures , 2002 .

[30]  Xu Zhengwen,et al.  Temporal Skewness of Electromagnetic Pulsed Waves Propagating Through Random Media with Embedded Irregularity Slab , 2003 .

[31]  I. P. Shkarofsky,et al.  Generalized turbulence space-correlation and wave-number spectrum-function pairs , 1968 .

[32]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[33]  Alexander Shapiro,et al.  Variogram fitting with a general class of conditionally nonnegative definite functions , 1991 .

[34]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[35]  Jorge Mateu,et al.  On potentially negative space time covariances obtained as sum of products of marginal ones , 2008 .

[36]  Chunsheng Ma,et al.  Spatio-temporal variograms and covariance models , 2005, Advances in Applied Probability.

[37]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[38]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[39]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[40]  Phaedon C. Kyriakidis,et al.  Geostatistical Space–Time Models: A Review , 1999 .

[41]  E. L. Russell Statistics in the Environmental & Earth Sciences , 1992 .

[42]  Tilmann Gneiting,et al.  Stochastic Models That Separate Fractal Dimension and the Hurst Effect , 2001, SIAM Rev..

[43]  T. Gneiting Compactly Supported Correlation Functions , 2002 .

[44]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[45]  Marc G. Genton,et al.  Testing for separability of space–time covariances , 2005 .

[46]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[47]  Carlo Gaetan,et al.  Composite likelihood methods for space-time data , 2006 .

[48]  Chunsheng Ma,et al.  Linear combinations of space-time covariance functions and variograms , 2005, IEEE Transactions on Signal Processing.

[49]  Zhengwen Xu,et al.  Statistical temporal behaviour of pulse wave propagation through continuous random media , 2003 .