Eco-friendly larvicide of Amphora coffeaeformis and Scenedesmus obliquus microalgae extracts against Culex pipiens

[1]  A. Mossa,et al.  Development of eco-friendly nanoemulsions of some natural oils and evaluating of its efficiency against postharvest fruit rot fungi of cucumber , 2021 .

[2]  A. Mossa,et al.  Mentha spicata essential oil nanoformulation and its larvicidal application against Culex pipiens and Musca domestica , 2020 .

[3]  Ram Kumar,et al.  Influence of Three Diatom Aldehydes against the Dengue Vector Aedes aegypti (Diptera: Culicidae) , 2019, American Journal of Plant Sciences.

[4]  S. Şahin Scenedesmus obliquus: A Potential Natural Source for Cosmetic Industry , 2019, International Journal of Secondary Metabolite.

[5]  A. Mossa,et al.  Rosemary essential oil nanoemulsion, formulation, characterization and acaricidal activity against the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) , 2019 .

[6]  Chul-Sa Kim,et al.  Insecticidal activities of cinnamic acid esters isolated from Ocimum gratissimum L. and Vitellaria paradoxa Gaertn leaves against Tribolium castaneum Hebst (Coleoptera: Tenebrionidae). , 2019, Pest management science.

[7]  M. Yücel,et al.  Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus sp. (Chlorophyta) extracted with different solvents , 2019, Journal of Applied Phycology.

[8]  A. El-Sayed,et al.  Bio and phyto-chemical effect of Amphora coffeaeformis extract against hepatic injury induced by paracetamol in rats , 2018, Molecular Biology Reports.

[9]  P. Santhanam,et al.  Halophilic benthic diatom Amphora coffeaeformis —A potent biomarker for lipid and biomedical application , 2018 .

[10]  R. Rengasamy,et al.  Biofuel and Biochemical Analysis of Amphora coffeaeformis RR03, a Novel Marine Diatom, Cultivated in an Open Raceway Pond , 2018, Energies.

[11]  A. Mikani,et al.  Effect of caffeic acid on feeding, α-amylase and protease activities and allatostatin-A content of Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae). , 2018, Journal of pesticide science.

[12]  L. Kramer,et al.  Rearing of Culex spp. and Aedes spp. Mosquitoes. , 2017, Bio-protocol.

[13]  R. Durak,et al.  Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. , 2017, Plant physiology and biochemistry : PPB.

[14]  Sam Mo,et al.  Toxicity Assessment of Chlorpyrifos, Malachite Green and Tetracyclines by Microtox® Assay: Detoxification by Ultrasonic , 2017 .

[15]  Miguel A. Saldaña,et al.  Microbial control of arthropod-borne disease , 2017, Memorias do Instituto Oswaldo Cruz.

[16]  O. W. Odom,et al.  Toward mosquito control with a green alga: expression of Cry toxins of Bacillus thuringiensis subsp. israelensis (Bti) in the chloroplast of Chlamydomonas , 2017, Journal of Applied Phycology.

[17]  A. Mossa Green Pesticides: Essential Oils as Biopesticides in Insect-pest Management , 2016 .

[18]  D. S. Alves,et al.  Malpighia emarginata DC. bagasse acetone extract: Phenolic compounds and their effect on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) , 2016 .

[19]  H. Ranson,et al.  Insecticide Resistance in African Anopheles Mosquitoes: A Worsening Situation that Needs Urgent Action to Maintain Malaria Control. , 2016, Trends in parasitology.

[20]  O. Clerck,et al.  Biological activities associated to the chemodiversity of the brown algae belonging to genus Lobophora (Dictyotales, Phaeophyceae) , 2017, Phytochemistry Reviews.

[21]  Muhammad Nadir Naqqash,et al.  Insecticide resistance and its molecular basis in urban insect pests , 2016, Parasitology Research.

[22]  Poonguzhali Tv,et al.  Mosquito larvicidal and pupicidal activity of seaweed extracts against Aedes aegypti , Anopheles stephensi and Culex quinquefasciatus , 2015 .

[23]  K. Clark,et al.  Plant phenolics are detoxified by prophenoloxidase in the insect gut , 2015, Scientific Reports.

[24]  M. Rajashekhar,et al.  Effect of Twelve Species of Marine Phytoplankton on Larval Survival and Development of the Mosquito Culex quinquefasciatus , 2015 .

[25]  S. N. Alves,et al.  Larvicidal activity of oils, fatty acids, and methyl esters from ripe and unripe fruit of Solanum lycocarpum (Solanaceae) against the vector Culex quinquefasciatus (Diptera: Culicidae). , 2015, Revista da Sociedade Brasileira de Medicina Tropical.

[26]  I. Jantan,et al.  Mosquitocidal and Oviposition Repellent Activities of the Extracts of Seaweed Bryopsis pennata on Aedes aegypti and Aedes albopictus , 2015, Molecules.

[27]  J. Perales,et al.  Wastewater treatment and biodiesel production by Scenedesmus obliquus in a two-stage cultivation process. , 2015, Bioresource technology.

[28]  C. Raminelli,et al.  Evaluation of Toxicity of Phenolic Compounds Using Aedes aegypti (Diptera: Culicidae) and Artemia salina , 2015 .

[29]  Rui Liu,et al.  Inhibition of insect glutathione S-transferase (GST) by conifer extracts. , 2014, Archives of insect biochemistry and physiology.

[30]  M. Abbassy,et al.  Adverse biochemical effects of various pesticides on sprayers of cotton fields in El-Behira Governorate, Egypt , 2014 .

[31]  P. Usha Rani,et al.  Role of castor plant phenolics on performance of its two herbivores and their impact on egg parasitoid behaviour , 2014, BioControl.

[32]  I. Sprawka,et al.  Are naringenin and quercetin useful chemicals in pest-management strategies? , 2013, Journal of Pest Science.

[33]  S. Ravikumar,et al.  Mosquito larvicidal activity of seaweeds extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus , 2013 .

[34]  F. Acheuk,et al.  Insecticidal activity of alkaloids extract of Pergularia tomentosa (Asclepiadaceae) against fifth instar larvae of Locusta migratoria cinerascens (Fabricius 1781) (Orthoptera: Acrididae) , 2013 .

[35]  Abdul Ahad Buhroo,et al.  Mechanisms of plant defense against insect herbivores , 2012, Plant signaling & behavior.

[36]  Birkinesh Ameneshewa,et al.  Global Trends in the Use of Insecticides to Control Vector-Borne Diseases , 2012, Environmental health perspectives.

[37]  N. Thajuddin,et al.  Biopotentials of marine alga. "Lobophora variegata" collected from the South Indian littoral , 2012 .

[38]  G. Jander,et al.  Non-protein amino acids in plant defense against insect herbivores: representative cases and opportunities for further functional analysis. , 2011, Phytochemistry.

[39]  R. Barbehenn,et al.  Tannins in plant-herbivore interactions. , 2011, Phytochemistry.

[40]  N. Lopes,et al.  Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases--a review. , 2011, Planta medica.

[41]  A. Ivask,et al.  Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals , 2010, Analytical and bioanalytical chemistry.

[42]  W. Alarif,et al.  Insecticidal Metabolites from the Green Alga Caulerpa racemosa , 2010 .

[43]  E. Gallagher,et al.  General Overview of Toxicology , 2010 .

[44]  K. Wu,et al.  MOSQUITO BEHAVIOR AND VECTOR CONTROL , 2009 .

[45]  M. Chandrasekaran,et al.  Larvicidal activity of fatty acid methyl esters of Vitex species against Culex quinquefasciatus , 2008, Parasitology Research.

[46]  I. Kapusta,et al.  Effect of phenolics on the pea aphid, Acyrthosiphon pisum [Harris] population on Pisum sativum L. [Fabaceae] , 2008 .

[47]  G. Marten Larvicidal algae. , 2007, Journal of the American Mosquito Control Association.

[48]  S. Phang,et al.  Effect of ten chlorophytes on larval survival, development and adult body size of the mosquito Aedes aegypti. , 2004, The Southeast Asian journal of tropical medicine and public health.

[49]  Wakako Ohmura,et al.  Antifeedant activity of flavonoids and related compounds against the subterranean termiteCoptotermes formosanus Shiraki , 2000, Journal of Wood Science.

[50]  M. Kawamura,et al.  Identification of (Na,K)ATPase inhibitor in brine shrimp, Artemia salina, as long-chain fatty acids , 1991, Journal of Comparative Physiology B.

[51]  I. Stupans,et al.  Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes. , 2003, Current drug metabolism.

[52]  A. Bianchini,et al.  Effects of Extracts from the Cyanobacterium Microcystis aeruginosa on Ion Regulation and Gill Na+,K+‐ATPase and K+‐Dependent Phosphatase Activities of the Estuarine Crab Chasmagnathus granulata (Decapoda, Grapsidae) , 2002, Physiological and Biochemical Zoology.

[53]  A. Makulla Fatty acid composition of Scenedesmus obliquus: Correlation to dilution rates , 2000 .

[54]  S. Ohara,et al.  Components of Steamed and Non-Steamed Japanese Larch (Larix leptolepis (Sieb. et Zucc.) Gord.) Heartwood Affecting the Feeding Behavior of the Subterranean Termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) , 1999 .

[55]  J. V. van Loon,et al.  Plants as Insect Food: Not the Ideal , 1998 .

[56]  T. Ananthakrishnan GALLIC AND SALICYLIC ACIDS : SENTINELS OF PLANT DEFENCE AGAINST INSECTS , 1997 .

[57]  K. Sivonen,et al.  Algae in mosquito breeding sites and the effectiveness of the mosquito larvicide Bacillus thuringiensis H-14 , 1993, World journal of microbiology & biotechnology.

[58]  W. S. Abbott,et al.  A method of computing the effectiveness of an insecticide. 1925. , 1925, Journal of the American Mosquito Control Association.

[59]  G. Marten Mosquito control by plankton management: the potential of indigestible green algae. , 1986, The Journal of tropical medicine and hygiene.

[60]  R. D. Ewing,et al.  Development of sodium regulation and de novo synthesis of Na+K-activated ATPase in larval brine shrimp, Artemia salina , 1977 .

[61]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .

[62]  B. P. Beirne,et al.  Influences of some freshwater plants on the development and survival of mosquito larvae in British Columbia. , 1974, Canadian journal of zoology.