Symbolic Dynamics from homoclinic tangles

We present a method for finding symbolic dynamics for a planar diffeomorphism with a homoclinic tangle. The method only requires a finite piece of tangle, which can be computed with available numer...

[1]  Analysis of a Class of Strange Attractors , 1999, math/9909012.

[2]  Y C Lai,et al.  Efficient algorithm for detecting unstable periodic orbits in chaotic systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Peter Schmelcher,et al.  GENERAL APPROACH TO THE LOCALIZATION OF UNSTABLE PERIODIC ORBITS IN CHAOTIC DYNAMICAL SYSTEMS , 1998 .

[4]  Pieter Collins Relative periodic point theory , 2001 .

[5]  Vered Rom-Kedar,et al.  Homoclinic tangles-classification and applications , 1994 .

[6]  G. Vegter,et al.  On the computation of invariant manifolds of fixed points , 1995 .

[7]  Mark A. Stremler,et al.  Topological fluid mechanics of stirring , 2000, Journal of Fluid Mechanics.

[8]  Kai T. Hansen Alternative method to find orbits in chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  Driven oscillators, knots, braids and Nielsen-Thurston theory , 1994 .

[10]  James A. Yorke,et al.  CALCULATING STABLE AND UNSTABLE MANIFOLDS , 1991 .

[11]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[12]  John Guckenheimer,et al.  Dstool: Computer assisted exploration of dynamical systems , 1992 .

[13]  Steven R. Bishop,et al.  Nonlinearity and Chaos in Engineering Dynamics , 1994 .

[14]  Floris Takens,et al.  Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .

[15]  Pieter Collins Dynamics forced by surface trellises , 1999, math/9907086.

[16]  C. Simó On the analytical and numerical approximation of invariant manifolds. , 1990 .

[17]  Joshua D. Reiss,et al.  Construction of symbolic dynamics from experimental time series , 1999 .

[18]  J. M. T. Thompson,et al.  Knot-types and bifurcation sequences of homoclinic and transient orbits of a single-degree-of-freedom driven oscillator , 1994 .

[19]  M. Handel A FIXED-POINT THEOREM FOR PLANAR HOMEOMORPHISMS , 1999 .

[20]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[21]  B. Jiang,et al.  Lectures on Nielsen fixed point theory , 1983 .

[22]  Konstantin Mischaikow,et al.  Conley index theory , 1995 .

[23]  M. Misiurewicz,et al.  Cycles for disk homeomorphisms and thick trees , 1993 .

[24]  Pieter Collins Surface Diffeomorphisms with Homoclinic and Heteroclinic Tangles , 1999 .

[25]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[26]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[27]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[28]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Homoclinic Orbits for Maps , 1997 .

[29]  W. Thurston On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .

[30]  Braids on the Poincaré section: A laser example. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  Bernd Krauskopf,et al.  Growing 1D and Quasi-2D Unstable Manifolds of Maps , 1998 .

[32]  Mladen Bestvina,et al.  Train-tracks for surface homeomorphisms , 1995 .

[33]  Dana D. Hobson,et al.  An efficient method for computing invariant manifolds of planar maps , 1993 .

[34]  J. Yorke,et al.  OUTER TANGENCY BIFURCATIONS OF CHAOTIC SETS , 1998 .