Thermoplasmonics Enable the Coupling of Light into the Solvent-Mediated Self-Assembly of Gold Nanoparticles

[1]  S. Link,et al.  Nonlinear effects in single-particle photothermal imaging. , 2022, The Journal of chemical physics.

[2]  Subhasish Subhasish,et al.  When Design Meets Function: The Prodigious Role of Surface Ligands in Regulating Nanoparticle Chemistry , 2022, Chemistry of Materials.

[3]  Soumendu Roy,et al.  Insights into the Utilization and Quantification of Thermoplasmonic Properties in Gold Nanorod Arrays , 2022, Chemistry of Materials.

[4]  R. Kashyap,et al.  Effect of Nanoparticle Size on Plasmonic Heat Driven Organic Transformation , 2022, ChemNanoMat.

[5]  Subhasish Subhasish,et al.  Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. , 2022, ACS applied materials & interfaces.

[6]  Subhasish Subhasish,et al.  Electrostatically Directed Long-Range Self-Assembly of Nucleotides with Cationic Nanoparticles to Form Multifunctional Bioplasmonic Networks. , 2022, Angewandte Chemie.

[7]  R. Macfarlane,et al.  Nanoparticle Assembly as a Materials Development Tool. , 2022, Journal of the American Chemical Society.

[8]  Lauren A. Warning,et al.  Naturally Occurring Proteins Direct Chiral Nanorod Aggregation , 2022, The Journal of Physical Chemistry C.

[9]  Soumendu Roy,et al.  Temporal Changes in Interparticle Interactions Drive the Formation of Transiently Stable Nanoparticle Precipitates. , 2021, Langmuir : the ACS journal of surfaces and colloids.

[10]  L. Liz‐Marzán,et al.  Plasmon-Enhanced Optical Chirality through Hotspot Formation in Surfactant-Directed Self-Assembly of Gold Nanorods. , 2020, ACS nano.

[11]  Y. Ko,et al.  Audible sound-controlled spatiotemporal patterns in out-of-equilibrium systems , 2020, Nature Chemistry.

[12]  Subi J. George,et al.  Active Bi-Component Nanoparticle Assembly with Temporal Microstructural and Functional Control. , 2020, Chemistry.

[13]  N. Zheng,et al.  Solvent-mediated assembly of atom-precise gold–silver nanoclusters to semiconducting one-dimensional materials , 2020, Nature Communications.

[14]  K. Bishop,et al.  Swelling Cholesteric Liquid Crystal Shells to Direct the Assembly of Particles at the Interface. , 2020, ACS nano.

[15]  J. Kneipp,et al.  Surface-Enhanced Hyper Raman Spectra of Aromatic Thiols on Gold and Silver Nanoparticles , 2020, The journal of physical chemistry. C, Nanomaterials and interfaces.

[16]  Jeremy J. Baumberg,et al.  Present and Future of Surface-Enhanced Raman Scattering , 2019, ACS nano.

[17]  B. Rieger,et al.  Pathway Dependence in the Fuel-Driven Dissipative Self-Assembly of Nanoparticles. , 2019, Journal of the American Chemical Society.

[18]  L. Liz‐Marzán,et al.  Solvent-Assisted Self-Assembly of Gold Nanorods into Hierarchically Organized Plasmonic Mesostructures , 2019, ACS applied materials & interfaces.

[19]  J. M. Taboada,et al.  Reversible Clustering of Gold Nanoparticles under Confinement , 2018, Angewandte Chemie.

[20]  A. Kornyshev,et al.  Electrotunable nanoplasmonic liquid mirror. , 2017, Nature materials.

[21]  T. Kawai,et al.  Programmed Self-Assembly of Branched Nanocrystals with an Amphiphilic Surface Pattern. , 2017, ACS nano.

[22]  John F Stanton,et al.  Quantifying Hydrogen-Bond Populations in Dimethyl Sulfoxide/Water Mixtures. , 2017, Angewandte Chemie.

[23]  R. Macfarlane,et al.  Self-Assembling Nanocomposite Tectons. , 2016, Journal of the American Chemical Society.

[24]  Yuebing Zheng,et al.  Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis. , 2016, ACS nano.

[25]  Shui-Tong Lee,et al.  Reversible and Precise Self-Assembly of Janus Metal-Organosilica Nanoparticles through a Linker-Free Approach. , 2016, ACS nano.

[26]  Bartosz A Grzybowski,et al.  The nanotechnology of life-inspired systems. , 2016, Nature nanotechnology.

[27]  Tao Ding,et al.  Light-induced actuating nanotransducers , 2016, Proceedings of the National Academy of Sciences.

[28]  Soumendu Roy,et al.  Regulation of Interparticle Forces Reveals Controlled Aggregation in Charged Nanoparticles , 2016 .

[29]  Hui Zhao,et al.  Light-controlled self-assembly of non-photoresponsive nanoparticles. , 2015, Nature chemistry.

[30]  M. Grzelczak,et al.  Solvent-induced division of plasmonic clusters† , 2013 .

[31]  M. Fiałkowski,et al.  Nanoparticles in a capillary trap: dynamic self-assembly at fluid interfaces. , 2013, ACS nano.

[32]  E. Kumacheva,et al.  Structural transitions in nanoparticle assemblies governed by competing nanoscale forces. , 2013, Journal of the American Chemical Society.

[33]  Gustaaf Van Tendeloo,et al.  Hydrophobic interactions modulate self-assembly of nanoparticles. , 2012, ACS nano.

[34]  D. Ma,et al.  In situ recyclable gold nanoparticles using CO2-switchable polymers for catalytic reduction of 4-nitrophenol. , 2012, Chemical communications.

[35]  N. M. Correa,et al.  Nonaqueous polar solvents in reverse micelle systems. , 2012, Chemical reviews.

[36]  S. Gray,et al.  Solvent-Mediated End-to-End Assembly of Gold Nanorods. , 2010, The journal of physical chemistry letters.

[37]  Haojun Liang,et al.  Solvent-induced self-assembly of polymer-tethered nanorods. , 2010, The journal of physical chemistry. B.

[38]  Christopher E. Wilmer,et al.  Nanoscale forces and their uses in self-assembly. , 2009, Small.

[39]  Mitchell A. Winnik,et al.  Photothermally-triggered self-assembly of gold nanorods. , 2009, Chemical communications.

[40]  B. Berne,et al.  Dewetting and hydrophobic interaction in physical and biological systems. , 2009, Annual review of physical chemistry.

[41]  Pablo G. Etchegoin,et al.  Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study , 2007 .

[42]  D. Beattie,et al.  Synthesis and surface structure of thymine-functionalized, self-assembled monolayer-protected gold nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[43]  Bartosz A Grzybowski,et al.  Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures , 2007, Proceedings of the National Academy of Sciences.

[44]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[45]  J. T. Mayo,et al.  Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals , 2006, Science.

[46]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[47]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[48]  Gregory V. Hartland,et al.  Heat Dissipation for Au Particles in Aqueous Solution: Relaxation Time versus Size , 2002 .

[49]  B. Korgel,et al.  Assembly and Self-Organization of Silver Nanocrystal Superlattices: Ordered “Soft Spheres” , 1998 .

[50]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[51]  J. Nowick,et al.  Molecular recognition in micelles: the roles of hydrogen bonding and hydrophobicity in adenine-thymine base-pairing in SDS micelles , 1993 .

[52]  R. Lebel,et al.  Density, Viscosity, Refractive Index, and Hygroscopicity of Mixtures of Water and Dimethyl Sulfoxide. , 1962 .