A Survey of the Elastic Flow of Curves and Networks

We collect and present in a unified way several results in recent years about the elastic flow of curves and networks, trying to draw the state of the art of the subject. In particular, we give a complete proof of global existence and smooth convergence to critical points of the solution of the elastic flow of closed curves in $${\mathbb {R}}^2$$ R 2 . In the last section of the paper we also discuss a list of open problems.

[1]  Thierry Aubin,et al.  Some Nonlinear Problems in Riemannian Geometry , 1998 .

[2]  V. Vassilev,et al.  Explicit Parameterization of Euler’s Elastica , 2008 .

[3]  A Sixth Order Curvature Flow of Plane Curves with Boundary Conditions , 2019, 2017 MATRIX Annals.

[4]  Glen Wheeler,et al.  Curve diffusion and straightening flows on parallel lines , 2017, 1703.10711.

[5]  Chun-Chi Lin,et al.  L 2-flow of elastic curves with clamped boundary conditions , 2012 .

[6]  S. Angenent Parabolic equations for curves on surfaces Part I. Curves with $p$-integrable curvature , 1990 .

[7]  Harald Garcke,et al.  Long time existence of solutions to an elastic flow of networks , 2019, Communications in Partial Differential Equations.

[8]  G. Gustafson,et al.  Boundary Value Problems of Mathematical Physics , 1998 .

[9]  L. Simon Asymptotics for a class of non-linear evolution equations, with applications to geometric problems , 1983 .

[10]  Paola Pozzi,et al.  Willmore-Helfrich L^{2}-flow of curves with natural boundary conditions , 2012, 1211.0949.

[11]  James McCoy,et al.  Evolution of closed curves by length-constrained curve diffusion , 2019, Proceedings of the American Mathematical Society.

[12]  Sigurd B. Angenent,et al.  Nonlinear analytic semiflows , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  C. Truesdell The influence of elasticity on analysis: The classic heritage , 1983 .

[14]  Marco Pozzetta,et al.  Convergence of elastic flows of curves into manifolds , 2020, Nonlinear Analysis.

[15]  Fabian Rupp,et al.  Existence and convergence of the length-preserving elastic flow of clamped curves , 2020, 2009.06991.

[16]  Carlo Mantegazza,et al.  The Łojasiewicz–Simon inequality for the elastic flow , 2020, Calculus of Variations and Partial Differential Equations.

[17]  Harald Garcke,et al.  Willmore flow of planar networks , 2017, Journal of Differential Equations.

[18]  Ralph Chill,et al.  On the Łojasiewicz–Simon gradient inequality , 2003 .

[19]  D. A. Singer,et al.  The total squared curvature of closed curves , 1984 .

[20]  Yingzhong Wen,et al.  $L^2$ flow of curve straightening in the plane , 1993 .

[21]  Chun-Chi Lin,et al.  The Second-Order L2-Flow of Inextensible Elastic Curves with Hinged Ends in the Plane , 2014, 1401.3120.

[23]  Paola Pozzi,et al.  Evolution of open elastic curves in ℝn subject to fixed length and natural boundary conditions , 2014 .

[24]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[25]  Shinya Okabe,et al.  The dynamics of elastic closed curves under uniform high pressure , 2008 .

[26]  N. Koiso,et al.  ON THE MOTION OF A CURVE TOWARDS ELASTICA , 1996 .

[27]  A. Mennucci,et al.  Hamilton—Jacobi Equations and Distance Functions on Riemannian Manifolds , 2002, math/0201296.

[28]  D. A. Singer,et al.  Curve straightening and a minimax argument for closed elastic curves , 1985 .

[29]  Adrian Spener Short time existence for the elastic flow of clamped curves , 2017 .

[30]  Matteo Novaga,et al.  Convergence to equilibrium of gradient flows defined on planar curves , 2013, 1306.1406.

[31]  Evolving inextensible and elastic curves with clamped ends under the second-order evolution equation in ℝ2 , 2018 .

[32]  Paola Pozzi,et al.  The Łojasiewicz–Simon gradient inequality for open elastic curves , 2016, 1604.07559.

[33]  Paola Pozzi,et al.  Elastic flow of networks: long-time existence result , 2019, Geometric Flows.

[34]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[35]  Alessandra Pluda,et al.  Degenerate Elastic Networks , 2021, Journal of geometric analysis.

[36]  Matteo Novaga,et al.  A Second Order Gradient Flow of p-Elastic Planar Networks , 2019, SIAM J. Math. Anal..

[37]  G. Burton Sobolev Spaces , 2013 .

[38]  Anders Linnér,et al.  Some properties of the curve straightening flow in the plane , 1989 .

[39]  O. A. Ladyzhenskai︠a︡ Boundary value problems of mathematical physics , 1967 .

[40]  Matteo Novaga,et al.  Curve shortening-straightening flow for non-closed planar curves with infinite length , 2013, 1306.1398.

[41]  H. Abels,et al.  Short time existence for the curve diffusion flow with a contact angle , 2018, 1810.07257.

[42]  Giuseppe Da Prato,et al.  Equations d'évolution abstraites non linéaires de type parabolique , 1979 .

[43]  M. Novaga,et al.  Minimal elastic networks , 2017, 1712.09589.

[44]  R. Chill,et al.  Willmore blowups are never compact , 2009 .

[45]  Harald Garcke,et al.  ELASTIC FLOW WITH JUNCTIONS: VARIATIONAL APPROXIMATION AND APPLICATIONS TO NONLINEAR SPLINES , 2012 .

[46]  Gerhard Dziuk,et al.  Evolution of Elastic Curves in Rn: Existence and Computation , 2002, SIAM J. Math. Anal..

[47]  E. Kuwert,et al.  Gradient flow for the Willmore functional , 2002 .

[48]  Glen Wheeler,et al.  Global analysis of the generalised Helfrich flow of closed curves immersed in $\R^n$ , 2012, 1205.5939.

[49]  Paola Pozzi,et al.  A gradient flow for open elastic curves with fixed length and clamped ends , 2017 .

[50]  Shinya Okabe,et al.  THE MOTION OF ELASTIC PLANAR CLOSED CURVES UNDER THE AREA-PRESERVING CONDITION , 2006 .

[51]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[52]  Louis Nirenberg,et al.  An extended interpolation inequality , 1966 .

[53]  Yingzhong Wen,et al.  Curve Straightening Flow Deforms Closed Plane Curves with Nonzero Rotation Number to Circles , 1995 .

[54]  Helmut Abels,et al.  A Blow-up Criterion for the Curve Diffusion Flow with a Contact Angle , 2020, SIAM J. Math. Anal..

[55]  Paola Pozzi,et al.  A gradient flow for the p-elastic energy defined on closed planar curves , 2018, Mathematische Annalen.

[56]  Harald Garcke,et al.  Parametric approximation of isotropic and anisotropic elastic flow for closed and open curves , 2012, Numerische Mathematik.