An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677

Ocean Drilling Program (ODP) Site 677 provided excellent material for high resolution stable isotope analysis of both benthonic and planktonic foraminifera through the entire Pleistocene and upper Pliocene. The oxygen isotope record is readily correlated with the SPECMAP stack (Imbrie et al. 1984) and with the record from DSDP 607 (Ruddiman et al. 1986) but a significantly better match with orbital models is obtained by departing from the timescale proposed by these authors below Stage 16 (620 000 years). It is the stronger contribution from the precession signal in the record from ODP Site 677 that provides the basis for the revised timescale. Our proposed modification to the timescale would imply that the currently adopted radiometric dates for the Matuyama–Brunhes boundary, the Jaramillo and Olduvai Subchrons and the Gauss–Matuyama boundary underestimate their true astronomical ages by between 5 and 7%.

[1]  J. Backman,et al.  Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region , 1984, Nature.

[2]  A. Malahoff,et al.  The fate of fossil fuel Co2 in the oceans , 1977 .

[3]  J. D. Hays,et al.  Variations in the Earth ' s Orbit : Pacemaker of the Ice Ages Author ( s ) : , 2022 .

[4]  N. Shackleton,et al.  Stable Isotope Record of Hole 504 Sediments: High Resolution Record of the Pleistocene , 1983 .

[5]  J. Alexandrovich,et al.  22. HIGH-RESOLUTION STRATIGRAPHIC CORRELATION OF ODP LEG 111 HOLES 677A AND 677B AND DSDP LEG 69 HOLE 504 1 , 1989 .

[6]  N. Shackleton,et al.  Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian and Pacific oceans , 1983 .

[7]  Wallace S. Broecker,et al.  Milankovitch Hypothesis Supported by Precise Dating of Coral Reefs and Deep-Sea Sediments , 1968, Science.

[8]  J. Alexandrovich 21. RADIOLARIAN BIOSTRATIGRAPHY OF ODP LEG 111, SITE 677, EASTERN EQUATORIAL PACIFIC, LATE MIOCENE THROUGH PLEISTOCENE 1 , 1989 .

[9]  H. Sakai,et al.  Sites 677 and 678 , 1988 .

[10]  Maureen E. Raymo,et al.  Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets , 1986 .

[11]  R. G. Johnson Brunhes-Matuyama Magnetic Reversal Dated at 790,000 yr B.P. by Marine-Astronomical Correlations , 1982, Quaternary Research.

[12]  D. Martinson,et al.  Graphic correlation of oxygen isotope stratigraphy application to the Late Quaternary , 1986 .

[13]  John Z. Imbrie,et al.  Modeling the Climatic Response to Orbital Variations , 1980, Science.

[14]  Jan Backman,et al.  Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean , 1989 .

[15]  N. Opdyke,et al.  Oxygen-Isotope and Paleomagnetic Stratigraphy of Pacific Core V28-239 Late Pliocene to Latest Pleistocene , 1976 .

[16]  André Berger,et al.  Milankovitch Theory and climate , 1988 .

[17]  C. Nelson,et al.  44. LATE QUATERNARY CARBONATE AND ISOTOPE STRATIGRAPHY, SUBANTARCTIC SITE , 1983 .

[18]  N. Shackleton The last interglacial in the marine and terrestrial records , 1969, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  Maureen E. Raymo,et al.  Evolution of Atlantic―Pacific δ13C gradients over the last 2.5 m.y. , 1990 .

[20]  W. Broecker Absolute dating and the astronomical theory of glaciation. , 1966, Science.

[21]  E. A. Mankinen,et al.  Paleomagnetic data from the Coso Range, California and current status of the Cobb Mountain normal geomagnetic polarity event , 1982 .

[22]  F. Hilgen,et al.  Periodicities of CaCO3 cycles in the Pliocene of Sicily: discrepancies with the quasi‐periods of the Earth's orbital cycles? , 1989 .

[23]  W. Berggren,et al.  Jurassic to Paleogene: Part 2 Paleogene geochronology and chronostratigraphy , 1985, Geological Society, London, Memoirs.

[24]  André Berger,et al.  Long-term variations of daily insolation and Quaternary climatic changes , 1978 .

[25]  N. Shackleton Carbon-13 in Uvigerina: Tropical Rainforest History and the Equatorial Pacific Carbonate Dissolution Cycles , 1977 .

[26]  N. Shackleton,et al.  Distribution, stratigraphic position and age of ash layer , 1975 .

[27]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[28]  Nicholas J Shackleton,et al.  Oxygen Isotope and Palaeomagnetic Stratigraphy of Equatorial Pacific Core V28-238: Oxygen Isotope Temperatures and Ice Volumes on a 105 Year and 106 Year Scale , 1973, Quaternary Research.

[29]  J. D. Hays,et al.  High resolution stratigraphic correlation of benthic oxygen isotopic records spanning the last 300,000 years , 1984 .

[30]  W. Köppen,et al.  Handbuch der Klimatologie , 1910, Nature.

[31]  C. Emiliani Paleotemperature Analysis of Core 280 and Pleistocene Correlations , 1958, The Journal of Geology.

[32]  Wallace S. Broecker,et al.  The Carbon cycle and atmospheric CO[2] : natural variations Archean to present , 1985 .

[33]  A. Berger Obliquity and precession for the last 5000000 years , 1976 .

[34]  D. Martinson,et al.  Late Pliocene variation in northern hemisphere ice sheets and North Atlantic deep water circulation , 1989 .

[35]  R. Huene,et al.  Initial reports of the deep sea drilling project: National Science Foundation, Washington, D.C., 1969, 672 pp., U.S. $ 10.25 , 1971 .

[36]  André Berger,et al.  Milankovitch and Climate , 1984, NATO ASI Series.

[37]  J. D. Hays,et al.  Age Dating and the Orbital Theory of the Ice Ages: Development of a High-Resolution 0 to 300,000-Year Chronostratigraphy , 1987, Quaternary Research.

[38]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .