Circumstellar molecular composition of the oxygen-rich AGB star IK Tauri - II. In-depth non-LTE chemical abundance analysis

Context. The interstellar medium is enriched primarily by matter ejected from evolved low and intermediate mass stars. The outflow from these stars creates a circumstellar envelope in which a rich gas-phase chemistry takes place. Complex shock-induced nonequilibrium chemistry takes place in the inner wind envelope, dust-gas reactions and ion-molecule reactions alter the abundances in the intermediate wind zone, and the penetration of cosmic rays and ultraviolet photons dissociates the molecules in the outer wind region. Aims. Little observational information exists on the circumstellar molecular abundance stratifications of many molecules. Furthermore, our knowledge of oxygen-rich envelopes is not as profound as for the carbon-rich counterparts. The aim of this paper is therefore to study the circumstellar chemical abundance pattern of 11 molecules and isotopologs ( 12 CO, 13 CO, SiS, 28 SiO, 29 SiO, 30 SiO, HCN, CN, CS, SO, SO2) in the oxygen-rich evolved star IK Tau. Methods. We have performed an in-depth analysis of a large number of molecular emission lines excited in the circumstellar envelope around IK Tau. The analysis is done based on a non-local thermodynamic equilibrium (non-LTE) radiative transfer analysis, which calculates the temperature and velocity structure in a self-consistent way. The chemical abundance pattern is coupled to theoretical outer wind model predictions including photodestruction and cosmic ray ionization. Not only the integrated line intensities, but also the line shapes are used as diagnostic tool to study the envelope structure. Results. The deduced wind acceleration is much slower than predicted from classical theories. SiO and SiS are depleted in the envelope, possibly due to the adsorption onto dust grains. For HCN and CS a clear difference with respect to inner wind non-equilibrium predictions is found, either indicating uncertainties in the inner wind theoretical modeling or the possibility that HCN and CS (or the radical CN) participate in the dust formation. The low signal-to-noise profiles of SO and CN prohibit an accurate abundance determination; the modeling of high-excitation SO2 lines is cumbersome, possibly related to line misidentifications or problems with the collisional rates. The SiO isotopic ratios ( 29 SiO/ 28 SiO and 30 SiO/ 28 SiO) point toward an enhancement in 28 SiO compared to results of classical stellar evolution codes. Predictions for H2O emission lines in the spectral range of the Herschel/HIFI mission are performed.

[1]  K. Menten,et al.  Circumstellar molecular composition of the oxygen-rich AGB star IK Tauri - I. Observations and LTE chemical abundance analysis , 2010, 1004.2029.

[2]  P. Hoppe,et al.  AN UNUSUAL PRESOLAR SILICON CARBIDE GRAIN FROM A SUPERNOVA: IMPLICATIONS FOR THE PRODUCTION OF SILICON-29 IN TYPE II SUPERNOVAE , 2009 .

[3]  S. Kwok,et al.  Circumstellar water vapour in M-type AGB stars: constraints from H2O(110-101) lines obtained with Odin , 2008, 0812.1338.

[4]  C. Vollmer,et al.  Si Isotopic Compositions of Presolar Silicate Grains from Red Giant Stars and Supernovae , 2008 .

[5]  H. Olofsson,et al.  On the reliability of mass-loss-rate estimates for AGB stars , 2008, 0806.0517.

[6]  L. Decin,et al.  Probing the mass-loss history of the unusual Mira variable R Hydrae through its infrared CO wind , 2008 .

[7]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[8]  S. Kwok,et al.  A Spectral Line Survey in the 2 and 1.3 mm Windows toward the Carbon-rich Envelope of IRC +10216 , 2008, 0802.1963.

[9]  K. Menten,et al.  Detection of “parent” molecules from the inner wind of AGB stars as tracers of non-equilibrium chemistry , 2008, 0801.1118.

[10]  H. Olofsson,et al.  Circumstellar water vapour in M-type AGB stars: radiative transfer models, abundances, and predictions for HIFI , 2008, 0801.0971.

[11]  G. Melnick,et al.  Water Vapor Emission from IRC +10216 and Other Carbon-Rich Stars: Model Predictions and Prospects for Multitransition Observations , 2007, 0710.1506.

[12]  L. Decin,et al.  The variable mass loss of the AGB star WX Piscium as traced by the CO J=1-0 through 7-6 lines and the dust emission , 2007, 0708.4107.

[13]  L. Decin,et al.  Theoretical model atmosphere spectra used for the calibration of infrared instruments , 2007, 0708.4120.

[14]  N. Woolf,et al.  Identification of Phosphorus Monoxide (X 2Πr) in VY Canis Majoris: Detection of the First P-O Bond in Space , 2007 .

[15]  M. Lindqvist,et al.  The abundance of SiS in circumstellar envelopes around AGB stars , 2007, 0707.0944.

[16]  N. Woolf,et al.  Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris , 2007, Nature.

[17]  L. Nittler,et al.  Silicon and Carbon Isotopic Ratios in AGB Stars: SiC Grain Data, Models, and the Galactic Evolution of the Si Isotopes , 2006 .

[18]  P. Woitke Too little radiation pressure on dust in the winds of oxygen-rich AGB stars , 2006, astro-ph/0609392.

[19]  I. Cherchneff A chemical study of the inner winds of asymptotic giant branch stars , 2006 .

[20]  A. de Koter,et al.  Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - I. Theoretical model – Mass-loss history unravelled in VY CMa , 2006, astro-ph/0606299.

[21]  D. Wilner,et al.  The Distribution of H13CN in the Circumstellar Envelope around IRC+10216 , 2006, 0707.4364.

[22]  H. Olofsson,et al.  SiO in C-rich circumstellar envelopes of AGB stars: effects of non-LTE chemistry and grain adsorption , 2006, astro-ph/0604213.

[23]  D. Teyssier,et al.  CO line emission from circumstellar envelopes , 2006 .

[24]  R. Tolchenov,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[25]  K. Marvel No Methane Here. The HCN Puzzle: Searching for CH3OH and C2H in Oxygen-rich Stars , 2005 .

[26]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[27]  P. Diamond,et al.  Axial Symmetry and Rotation in the SiO Maser Shell of IK Tauri , 2005, astro-ph/0503182.

[28]  J. Black,et al.  An atomic and molecular database for analysis of submillimetre line observations , 2004, astro-ph/0411110.

[29]  P. Hoppe,et al.  Discovery of Abundant In Situ Silicate and Spinel Grains from Red Giant Stars in a Primtive Meteorite , 2004 .

[30]  M. Honma,et al.  Mass-losing pulsating stars and their circumstellar matter : observations and theory , 2003 .

[31]  M. Groenewegen,et al.  "Thermal" SiO radio line emission towards M-type AGB stars: A probe of circumstellar dust formation and dynamics , 2003, astro-ph/0302179.

[32]  F. D. Tak,et al.  Sulphur chemistry in the envelopes of massive young stars , 2002, astro-ph/0212325.

[33]  UK.,et al.  Sub-au imaging of water vapour clouds around four asymptotic giant branch stars , 2002, astro-ph/0211473.

[34]  R. Liseau,et al.  The ISO-LWS map of the Serpens cloud core. II. The line spectra , 2002, astro-ph/0202092.

[35]  Atlanta,et al.  Crystalline silicate dust around evolved stars - II. The crystalline silicate complexes , 2002, astro-ph/0201304.

[36]  T. Millar,et al.  Sulphur-bearing carbon chains in IRC+10216 , 2001 .

[37]  P. Gensheimer,et al.  Submillimeter- and Millimeter-Wavelength Observations of SiO and HCN in Circumstellar Envelopes of AGB Stars , 2000 .

[38]  M. Barlow,et al.  Dust features in the 10-mu m infrared spectra of oxygen-rich evolved stars , 2000 .

[39]  J. Cernicharo,et al.  A λ2 mm molecular line survey of the C-star envelope IRC+10216 , 2000 .

[40]  J. Cassinelli,et al.  Introduction to Stellar Winds , 1999 .

[41]  J. Cassinelli,et al.  Introduction to Stellar Winds by Henny J. G. L. M. Lamers , 1999 .

[42]  William C. Danchi,et al.  Multiple Dust Shells and Motions around IK Tauri as Seen by Infrared Interferometry , 1997 .

[43]  K. Menten,et al.  Physical Parameters of the IRC +10216 Circumstellar Envelope: New Constraints from Submillimeter Observations , 1997 .

[44]  P. Hoppe,et al.  Silicon Nitride from Supernovae , 1995 .

[45]  A. Tielens,et al.  Molecular rotational line profiles from oxygen-rich red giant winds , 1994 .

[46]  S. Green Collisional Excitation of Interstellar Sulfur Dioxide , 1994 .

[47]  D. Goorvitch,et al.  Calculation of (12)C(16)O and (13)C(16)O X(1)Sigma(+) rovibrational intensities for v less than or equal to 20 and J less than or equal to 150 , 1994 .

[48]  S. Langhoff,et al.  A theoretical study of the electric dipole moment function of SiO , 1993 .

[49]  A. D. McLean,et al.  Improved collisional excitation rates for interstellar water. , 1993, The Astrophysical journal. Supplement series.

[50]  J. Bieging,et al.  The distribution of molecules in the circumstellar envelope of IRC +10216: HC3N, C3N, and SiS , 1993 .

[51]  R. Stencel,et al.  On the interaction between dust and gas in late-type stellar atmospheres and winds , 1992 .

[52]  J. Black,et al.  Electron densities and the excitation of CN in molecular clouds , 1991 .

[53]  S. Deguchi,et al.  H2O emission from evolved stars at the far-infrared and submillimeter wavelengths , 1990 .

[54]  P. Bowers,et al.  Envelope structures and optical/radio positions of cool stars , 1989 .

[55]  P. J. Huggins,et al.  The photodissociation of CO in circumstellar envelopes , 1988 .

[56]  G. Knapp,et al.  Mass Loss from Evolved Stars. VII. OH Maser Shell Radii and Mass-Loss Rates for OH/IR Stars , 1987 .

[57]  P. Bowers,et al.  H2O masers in circumstellar envelopes , 1987 .

[58]  V. Smith,et al.  Isotopic abundances of silicon in four red giants , 1987 .

[59]  M. Schenewerk,et al.  Detection of hydrogen cyanide emission from the peculiar oxygen–rich evolved star IRC + 10420 , 1986, Nature.

[60]  P. Goldsmith,et al.  HCN emission from OH infrared sources , 1985, Nature.

[61]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[62]  G. Knapp,et al.  Mass loss from evolved stars. III: Mass loss rates for fifty stars from CO J=1−0 observations , 1985 .

[63]  M. Jura The dust around the carbon star IRC +10216 , 1983 .

[64]  N. Scoville,et al.  OH-IR stars. I. Physical properties of circumstellar envelopes , 1976 .

[65]  G. Lockwood,et al.  The period and spectral range of IK Tauri. , 1973 .

[66]  D. E. Martz,et al.  Observations of Extremely Cool Stars , 1965 .

[67]  J. Sun,et al.  Silicon Isotopic Abundances in Pulsating SiO Maser Stars , 2003 .

[68]  R. Neri,et al.  A 12 CO (J =1 ! 0) and (J =2 ! 1) atlas of circumstellar envelopes of AGB and post-AGB stars , 1998 .

[69]  A. Omont,et al.  From Miras to planetary nebulae : which path for stellar evolution ? : Montpellier, France - September 4-7, 1989 , 1990 .