Bird species classification using spectrograms

This paper describes a system for automatic bird species classification based on features taken from the textural content of spectrogram images. The texture features are extracted using three of the most common texture operators described in the Digital Image Processing literature: Local Binary Pattern (LBP), Local Phase Quantization (LPQ) and Gabor Filters. Aiming to perform more fare comparisons, the experiments were performed over a database already used in other works presented in the literature. In the classification step, SVM classifier was used and the final results were taken using 10-fold cross validation. The experiments were performed over a challenger dataset composed of 46 classes, and the best accuracy rate obtained is about 77.65%.

[1]  Jacques Facon,et al.  Bird Species Classification Based on Color Features , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[2]  Tianyou Chai,et al.  Selection of Gabor filters for improved texture feature extraction , 2010, 2010 IEEE International Conference on Image Processing.

[3]  P. Slater,et al.  Bird Song: Biological Themes and Variations , 1995 .

[4]  Fernando Costa Straube,et al.  Sobre a grandeza e a unidade utilizada para estimar esforço de captura com utilização de redes-de-neblina , 2014 .

[5]  F. Carpenter,et al.  A Spectrum of Nectar-Eater Communities , 1978 .

[6]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[7]  Frank Kurth,et al.  Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring , 2010, Pattern Recognit. Lett..

[8]  P. J. B. Slater,et al.  Bird Song: Contents , 2008 .

[9]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[10]  Luiz S. Oliveira,et al.  Music genre recognition using spectrograms , 2011, 2011 18th International Conference on Systems, Signals and Image Processing.

[11]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[12]  Ian Agranat,et al.  IDENTIFYING ANIMAL SPECIES FROM THEIR VOCALIZATIONS , 2009 .

[13]  Hongxun Yao,et al.  Discriminative Features for Bird Species Classification , 2014, ICIMCS '14.

[14]  D. W. Snow,et al.  EVOLUTIONARY ASPECTS OF FRUIT-EATING BY BIRDS , 2008 .

[15]  Alessandro Lameiras Koerich,et al.  Feature set comparison for automatic bird species identification , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[16]  S.-A. Selouani,et al.  Automatic birdsong recognition based on autoregressive time-delay neural networks , 2005, 2005 ICSC Congress on Computational Intelligence Methods and Applications.

[17]  Clive K. Catchpole,et al.  Bird song: Biological themes and variations, 2nd ed. , 2008 .

[18]  Chao Huang,et al.  Bird breed classification and annotation using saliency based graphical model , 2014, J. Vis. Commun. Image Represent..

[19]  Luiz Eduardo Soares de Oliveira,et al.  Music genre classification using LBP textural features , 2012, Signal Process..

[20]  Xiaoli Z. Fern,et al.  Audio Classification of Bird Species: A Statistical Manifold Approach , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[21]  Seppo Ilmari Fagerlund,et al.  Bird Species Recognition Using Support Vector Machines , 2007, EURASIP J. Adv. Signal Process..

[22]  Luiz Eduardo Soares de Oliveira,et al.  Music Genre Recognition Using Gabor Filters and LPQ Texture Descriptors , 2013, CIARP.

[23]  Vladimir Naumovich Vapni The Nature of Statistical Learning Theory , 1995 .

[24]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[25]  Andreas Rauber,et al.  LifeCLEF Bird Identification Task 2017 , 2017, CLEF.

[26]  Yandre M. G. Costa Reconhecimento de gêneros musicais utilizando espectrogramas com combinação de classificadores , 2013 .

[27]  Chang-Hsing Lee,et al.  Bird Species Recognition by Comparing the HMMs of the Syllables , 2007, Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007).

[28]  Robert K. Colwell,et al.  Community Organization Among Neotropical Nectar-Feeding Birds , 1978 .

[29]  R T Holmes,et al.  Bird Predation on Forest Insects: An Exclosure Experiment , 1979, Science.

[30]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  J A Kogan,et al.  Automated recognition of bird song elements from continuous recordings using dynamic time warping and hidden Markov models: a comparative study. , 1998, The Journal of the Acoustical Society of America.

[33]  David G. Stork,et al.  Pattern Classification , 1973 .

[34]  Alessandro Lameiras Koerich,et al.  Automatic Bird Species Identification for Large Number of Species , 2011, 2011 IEEE International Symposium on Multimedia.

[35]  D Margoliash,et al.  Template-based automatic recognition of birdsong syllables from continuous recordings. , 1996, The Journal of the Acoustical Society of America.

[36]  Ville Ojansivu,et al.  Blur Insensitive Texture Classification Using Local Phase Quantization , 2008, ICISP.

[37]  Valerie I. Cullinan,et al.  Classification of birds and bats using flight tracks , 2015, Ecol. Informatics.

[38]  Peter Yeo,et al.  Natural history of pollination , 1947 .

[39]  Fernando J. Von Zuben,et al.  Support vector machines, inferencia transdutiva e o problema de classificação , 2002 .