Stereo-Based Visual Odometry for Autonomous Robot Navigation

Mobile robots should possess accurate self-localization capabilities in order to be successfully deployed in their environment. A solution to this challenge may be derived from visual odometry (VO), which is responsible for estimating the robot's pose by analysing a sequence of images. The present paper proposes an accurate, computationally-efficient VO algorithm relying solely on stereo vision images as inputs. The contribution of this work is twofold. Firstly, it suggests a non-iterative outlier detection technique capable of efficiently discarding the outliers of matched features. Secondly, it introduces a hierarchical motion estimation approach that produces refinements to the global position and orientation for each successive step. Moreover, for each subordinate module of the proposed VO algorithm, custom non-iterative solutions have been adopted. The accuracy of the proposed system has been evaluated and compared with competent VO methods along DGPS-assessed benchmark routes. Experimental results of relevance to rough terrain routes, including both simulated and real outdoors data, exhibit remarkable accuracy, with positioning errors lower than 2%.

[1]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[2]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[3]  Hong Zhang,et al.  Quantitative Evaluation of Feature Extractors for Visual SLAM , 2007, Fourth Canadian Conference on Computer and Robot Vision (CRV '07).

[4]  Antonios Gasteratos,et al.  Visual Odometry for autonomous robot navigation through efficient outlier rejection , 2013, 2013 IEEE International Conference on Imaging Systems and Techniques (IST).

[5]  G. Oriolo,et al.  Robotics: Modelling, Planning and Control , 2008 .

[6]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[7]  Dimitrios Soudris,et al.  SPARTAN: Developing a Vision System for Future Autonomous Space Exploration Robots , 2014, J. Field Robotics.

[8]  David S. Wettergreen,et al.  SECOND EXPERIMENTS IN THE ROBOTIC INVESTIGATION OF LIFE IN THE ATACAMA DESERT OF CHILE , 2005 .

[9]  Kurt Konolige,et al.  Real-Time Detection of Independent Motion using Stereo , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[10]  Clark F. Olson,et al.  Robust stereo ego-motion for long distance navigation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[11]  Javier Civera,et al.  Dimensionless Monocular SLAM , 2007, IbPRIA.

[12]  Georgios Ch. Sirakoulis,et al.  Non-probabilistic cellular automata-enhanced stereo vision simultaneous localization and mapping , 2011 .

[13]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[14]  Kurt Konolige,et al.  CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching , 2008, ECCV.

[15]  Rakesh Gupta,et al.  Robust real-time egomotion from stereo images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[16]  David Nister,et al.  Bundle Adjustment Rules , 2006 .

[17]  Robert C. Bolles,et al.  Localization and Mapping for Autonomous Navigation in Outdoor Terrains : A Stereo Vision Approach , 2007, 2007 IEEE Workshop on Applications of Computer Vision (WACV '07).

[18]  Ryo Kurazume,et al.  Laser-based geometrical modeling of large-scale architectural structures using co-operative multiple robots , 2012, Auton. Robots.

[19]  Aldo Cumani Feature Localization Refinement for Improved Visual Odometry Accuracy , 2010 .

[20]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[21]  Antonios Gasteratos,et al.  SPARTAN system: Towards a low-cost and high-performance vision architecture for space exploratory rovers , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[22]  Peter I. Corke,et al.  Omnidirectional visual odometry for a planetary rover , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[23]  M. SRIHARI,et al.  DESIGN AND ANALYSIS OF A PORTABLE INDOOR LOCALIZATION AID FOR THE VISUALLY IMPAIRED , 2014 .

[24]  Winston Churchill,et al.  The New College Vision and Laser Data Set , 2009, Int. J. Robotics Res..

[25]  James R. Bergen,et al.  Visual odometry for ground vehicle applications , 2006, J. Field Robotics.

[26]  Javier Civera,et al.  1-point RANSAC for EKF-based Structure from Motion , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Andrew Howard,et al.  Real-time stereo visual odometry for autonomous ground vehicles , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Guangjun Liu,et al.  Localization of a door handle of unknown geometry using a single camera for door-opening with a mobile manipulator , 2012, Auton. Robots.

[29]  Mark Woods,et al.  Seeker—Autonomous Long‐range Rover Navigation for Remote Exploration , 2014, J. Field Robotics.

[30]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[31]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[32]  K. Konolige Rough Terrain Visual Odometry , 2007 .

[33]  Truong Q. Nguyen,et al.  An integrated stereo visual odometry for robotic navigation , 2014, Robotics Auton. Syst..

[34]  John J. Craig Zhu,et al.  Introduction to robotics mechanics and control , 1991 .

[35]  Kurt Konolige,et al.  Small Vision Systems: Hardware and Implementation , 1998 .

[36]  Kurt Konolige,et al.  Visual Odometry Using Sparse Bundle Adjustment on an Autonomous Outdoor Vehicle , 2006, AMS.

[37]  Antonios Gasteratos,et al.  An intelligent multi-sensor system for first responder indoor navigation , 2011 .

[38]  Shao-Wen Yang,et al.  Multiple-model RANSAC for ego-motion estimation in highly dynamic environments , 2009, 2009 IEEE International Conference on Robotics and Automation.

[39]  Roland Siegwart,et al.  Stereo-Based Ego-Motion Estimation Using Pixel Tracking and Iterative Closest Point , 2006, Fourth IEEE International Conference on Computer Vision Systems (ICVS'06).

[40]  Michel Dhome,et al.  Real Time Localization and 3D Reconstruction , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[41]  Paul Newman,et al.  SLAM-Loop Closing with Visually Salient Features , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[42]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[43]  L. J. Bain,et al.  Introduction to Probability and Mathematical Statistics , 1987 .

[44]  Johann Borenstein,et al.  Methods for the Reduction of Odometry Errors in Over-Constrained Mobile Robots , 2004, Auton. Robots.

[45]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.