An AdS crunch in supergravity

We review some properties of N=8 gauged supergravity in four dimensions with modified, but AdS invariant boundary conditions on the m2 = −2 scalars. There is a one‐parameter class of asymptotic conditions on these fields and the metric components, for which the full AdS symmetry group is preserved. The generators of the asymptotic symmetries are finite, but acquire a contribution from the scalar fields. For a large class of such boundary conditions, we find there exist black holes with scalar hair that are specified by a single conserved charge. Since Schwarschild‐AdS is a solution too for all boundary conditions, this provides an example of black hole non‐uniqueness. We also show there exist solutions where smooth initial data evolve to a big crunch singularity. This opens up the possibility of using the dual conformal field theory to obtain a fully quantum description of the cosmological singularity, and we report on a preliminary study of this.

[1]  G. Horowitz,et al.  Towards a Big Crunch Dual , 2004, hep-th/0406134.

[2]  T. Hertog,et al.  Black holes with scalar hair and asymptotics in N = 8 supergravity , 2004, hep-th/0404261.

[3]  M. Henneaux,et al.  Asymptotically anti–de Sitter spacetimes and scalar fields with a logarithmic branch , 2004, hep-th/0404236.

[4]  S. Shenker,et al.  Comments on Cosmic Censorship in AdS/CFT , 2004, hep-th/0403198.

[5]  Mihalis Dafermos On naked singularities and the collapse of self-gravitating Higgs fields , 2004, gr-qc/0403033.

[6]  Per Kraus,et al.  Numerical study of cosmic censorship in string theory , 2004, hep-th/0402109.

[7]  G. Horowitz,et al.  Negative energy in string theory and cosmic censorship violation , 2003, hep-th/0310054.

[8]  G. Horowitz,et al.  Generic cosmic-censorship violation in anti-de Sitter space. , 2003, Physical review letters.

[9]  S. Shenker,et al.  The black hole singularity in AdS/CFT , 2003, hep-th/0306170.

[10]  Y. Oz,et al.  M Theory on AdS p × S 11 − p and Superconformal Field Theories , 2004 .

[11]  G. Horowitz,et al.  Negative Energy Density in Calabi-Yau Compactifications , 2003, hep-th/0304199.

[12]  S. Gubser,et al.  A Universal result on central charges in the presence of double trace deformations , 2002, hep-th/0212138.

[13]  José A. González,et al.  Black hole scalar hair in asymptotically anti de Sitter spacetimes , 2002, gr-qc/0207069.

[14]  T. Hertog,et al.  Why does inflation start at the top of the hill , 2002, hep-th/0204212.

[15]  M. Henneaux,et al.  Black holes and asymptotics of 2 + 1 gravity coupled to a scalar field , 2002, hep-th/0201170.

[16]  P. Steinhardt,et al.  Cosmic Evolution in a Cyclic Universe , 2001, hep-th/0111098.

[17]  P. Steinhardt,et al.  From big crunch to big bang , 2001, hep-th/0108187.

[18]  R. Penrose,et al.  Gravitational Collapse : The Role of General Relativity 1 , 2002 .

[19]  E. Witten Multi-Trace Operators, Boundary Conditions, And AdS/CFT Correspondence , 2001, hep-th/0112258.

[20]  T. Torii,et al.  Scalar hair on the black hole in asymptotically anti--de Sitter spacetime , 2001 .

[21]  E. Witten,et al.  Ads/CFT correspondence and symmetry breaking , 1999, hep-th/9905104.

[22]  M. Duff,et al.  Anti-de Sitter black holes in gauged N = 8 supergravity , 1999, hep-th/9901149.

[23]  Y. Oz,et al.  M theory on AdSp×S11−p and superconformal field theories , 1998, hep-th/9803051.

[24]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[25]  I. Bengtsson,et al.  Making anti-de Sitter black holes , 1996, gr-qc/9604005.

[26]  G. Veneziano,et al.  Phenomenological aspects of the pre-big-bang scenario in string cosmology , 1994, hep-th/0207130.

[27]  Deon Mark Solomons,et al.  The wave function of the universe , 1994 .

[28]  G. Veneziano,et al.  Pre-big-bang in string cosmology , 1992, hep-th/9211021.

[29]  M. Heusler A no‐hair theorem for self‐gravitating nonlinear sigma models , 1992 .

[30]  P. González-Díaz On the wave function of the universe , 1985 .

[31]  M. Henneaux,et al.  Asymptotically anti-de Sitter spaces , 1985 .

[32]  P. Townsend Positive energy and the scalar potential in higher dimensional (super) gravity theories , 1984 .

[33]  G. Gibbons,et al.  The stability of gauged supergravity , 1983 .

[34]  D. Freedman,et al.  Stability in Gauged Extended Supergravity , 1982 .

[35]  D. Freedman,et al.  Positive Energy in anti-De Sitter Backgrounds and Gauged Extended Supergravity , 1982 .

[36]  L. Abbott,et al.  Stability of gravity with a cosmological constant , 1982 .

[37]  H. Nicolai,et al.  N=8 supergravity with local SO(8) × SU(8) invariance , 1982 .

[38]  S. Coleman,et al.  Gravitational Effects on and of Vacuum Decay , 1980 .

[39]  S. Hawking Comments on cosmic censorship , 1979 .

[40]  J. Bekenstein Exact solutions of Einstein conformal scalar equations , 1974 .