Facile synthesis of high-entropy zirconate nanopowders and their sintering behaviors

[1]  Yiguang Wang,et al.  Synthesis and characterization of high-entropy (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2(Zr0.75Ce0.25)2O7 nanopowders , 2022, Ceramics International.

[2]  Shuo Huang,et al.  Single-phase rare-earth high-entropy zirconates with superior thermal and mechanical properties , 2022, Journal of the European Ceramic Society.

[3]  Yanhui Chu,et al.  Synthesis of the superfine high-entropy zirconate nanopowders by polymerized complex method , 2021, Journal of Advanced Ceramics.

[4]  Q. Tian,et al.  Preparation of Gd2Zr2O7 nanopowders by polyacrylamide gel method and their sintering behaviors , 2021, Journal of the European Ceramic Society.

[5]  Yiguang Wang,et al.  High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings , 2021, Journal of Advanced Ceramics.

[6]  Xiangping Jiang,et al.  High sintering activity NaNbO3 powder synthesis via the polyacrylamide gel method and fabrication of a NaNbO3 ceramic at lower temperature , 2021, Journal of Materials Research and Technology.

[7]  Yanhui Chu,et al.  Nanocrystalline high‐entropy carbide ceramics with improved mechanical properties , 2021, Journal of the American Ceramic Society.

[8]  Zhaoli Liu,et al.  A novel (La0.2Sm0.2Eu0.2Gd0.2Tm0.2)2Zr2O7 high-entropy ceramic nanofiber with excellent thermal stability , 2021 .

[9]  Y. Chiba,et al.  A Theoretical Study of Vibrational and Optical Properties of Isatin , 2021, Brazilian Journal of Physics.

[10]  Yanchun Zhou,et al.  High-entropy ceramics: Present status, challenges, and a look forward , 2021, Journal of Advanced Ceramics.

[11]  Yanchun Zhou,et al.  Preparation and properties of CMAS resistant bixbyite structured high-entropy oxides RE2O3 (RE = Sm, Eu, Er, Lu, Y, and Yb): Promising environmental barrier coating materials for Al2O3f/Al2O3 composites , 2021, Journal of Advanced Ceramics.

[12]  Yuanhua Lin,et al.  Electrical and thermal transport behaviours of high-entropy perovskite thermoelectric oxides , 2021, Journal of Advanced Ceramics.

[13]  Jiajie Li,et al.  Unveiling exceptional sinterability of ultrafine α-Al2O3 nanopowders , 2020, Journal of Materiomics.

[14]  R. Unocic,et al.  Probing the Local Site Disorder and Distortion in Pyrochlore High-Entropy Oxides. , 2020, Journal of the American Chemical Society.

[15]  Jian Luo,et al.  A new class of high-entropy M3B4 borides , 2020, Journal of Advanced Ceramics.

[16]  Laiqi Zhang,et al.  Complete elimination of pest oxidation by high entropy refractory metallic silicide (Mo0.2W0.2Cr0.2Ta0.2Nb0.2)Si2 , 2020 .

[17]  F. Gao,et al.  Dual-phase rare-earth-zirconate high-entropy ceramics with glass-like thermal conductivity , 2020 .

[18]  P. Bernath,et al.  Cyclohexane Vibrations: High-Resolution Spectra and Anharmonic Local Mode Calculations. , 2020, The journal of physical chemistry. A.

[19]  T. Germann,et al.  On the grain size dependence of shock responses in nanocrystalline sic ceramics at high strain rates , 2020 .

[20]  X. Qi,et al.  Preparation and Property of High Entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 Perovskite Ceramics , 2020, Journal of Inorganic Materials.

[21]  R. Orrú,et al.  Ultra high temperature high-entropy borides: Effect of graphite addition on oxides removal and densification behaviour , 2020, Ceramics International.

[22]  Fengnian Zhang,et al.  Preparation and Sintering Behavior of High Entropy Ceramic (Zr1/7Hf1/7Ce1/7Y2/7La2/7)O2-δ , 2020 .

[23]  G. Hilmas,et al.  Processing of dense high-entropy boride ceramics , 2020 .

[24]  Shunyao Wang,et al.  Numerical simulation to study and optimize the significant hidden temperature gradients in adiabatic tests , 2020, Journal of Thermal Analysis and Calorimetry.

[25]  R. Sedlák,et al.  Improved creep resistance of high entropy transition metal carbides , 2020 .

[26]  Houzheng Wu,et al.  High-entropy silicide ceramics developed from (TiZrNbMoW)Si2 formulation doped with aluminum , 2020 .

[27]  W. Xu,et al.  High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications , 2020, Journal of Advanced Ceramics.

[28]  Qianwen Zhang,et al.  Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides , 2020 .

[29]  Yiguang Wang,et al.  Synthesis and structures of high-entropy pyrochlore oxides , 2020 .

[30]  Yiguang Wang,et al.  Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating , 2020 .

[31]  W. Hou,et al.  3D hierarchical porous nitrogen-doped carbon/Ni@NiO nanocomposites self-templated by cross-linked polyacrylamide gel for high performance supercapacitor electrode. , 2020, Journal of colloid and interface science.

[32]  K. Świerczek,et al.  Defect structure and transport properties of (Co,Cr,Fe,Mn,Ni)3O4 spinel-structured high entropy oxide , 2020 .

[33]  Renkun Chen,et al.  Size disorder as a descriptor for predicting reduced thermal conductivity in medium- and high-entropy pyrochlore oxides , 2019, Scripta Materialia.

[34]  Yanhui Chu,et al.  Chrysanthemum-like high-entropy diboride nanoflowers: A new class of high-entropy nanomaterials , 2019, Journal of Advanced Ceramics.

[35]  Shi-ze Yang,et al.  Room-temperature Synthesis of High-entropy Perovskite Oxide Nanoparticle Catalysts via Ultrasonication-based Method. , 2019, ChemSusChem.

[36]  Zhou Yanchun,et al.  (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate , 2019, Journal of Materials Science & Technology.

[37]  J. Zou,et al.  Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach , 2019, Science China Materials.

[38]  Guo‐Jun Zhang,et al.  High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials , 2019, Journal of Advanced Ceramics.

[39]  Peng Gao,et al.  The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors , 2019, Journal of Power Sources.

[40]  Tyler J. Harrington,et al.  Phase stability and mechanical properties of novel high entropy transition metal carbides , 2019, Acta Materialia.

[41]  Tyler J. Harrington,et al.  A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2 , 2019, Journal of Materiomics.

[42]  Cormac Toher,et al.  High-entropy high-hardness metal carbides discovered by entropy descriptors , 2018, Nature Communications.

[43]  Tyler J. Harrington,et al.  High-entropy fluorite oxides , 2018, Journal of the European Ceramic Society.

[44]  H. Hahn,et al.  Nanocrystalline multicomponent entropy stabilised transition metal oxides , 2017 .

[45]  Jacob L. Jones,et al.  Entropy-stabilized oxides , 2015, Nature Communications.

[46]  X. Zu,et al.  Chelating agents role on phase formation and surface morphology of single orthorhombic YMn2O5 nanorods via modified polyacrylamide gel route , 2014, Science China Chemistry.

[47]  Jinlong Jiang,et al.  Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route , 2009 .

[48]  Jinlong Jiang,et al.  Synthesis of TbMnO3 nanoparticles via a polyacrylamide gel route , 2012 .