On the separability of sparse context-free languages and of bounded rational relations

This paper proves two results. (1) Given two bounded context-free languages, it is recursively decidable whether or not there exists a regular language which includes the first and is disjoint with the second and (2) given two rational k-ary bounded relations it is recursively decidable whether or not there exists a recognizable relation which includes the first and is disjoint with the second.

[1]  Joseph P. Noonan,et al.  The Mutual Information Principle and Applications , 1973, Inf. Control..

[2]  A. Kasher Review: Seymour Ginsburg, Edwin H. Spanier, Semigroups, Presburger Formulas, and Languages , 1969 .

[3]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[4]  Leslie G. Valiant,et al.  Regularity and Related Problems for Deterministic Pushdown Automata , 1975, JACM.

[5]  Christian Choffrut,et al.  Separability of rational relations in A* × Nm by recognizable relations is decidable , 2006, Inf. Process. Lett..

[6]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[7]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[8]  Seymour Ginsburg,et al.  BOUNDED REGULAR SETS , 1966 .

[9]  Thomas Sudkamp,et al.  Languages and Machines , 1988 .

[10]  Aldo de Luca,et al.  Finiteness and Regularity in Semigroups and Formal Languages , 1999, Monographs in Theoretical Computer Science An EATCS Series.

[11]  J. Sakarovitch Eléments de théorie des automates , 2003 .

[12]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[13]  Benedetto Intrigila,et al.  On the structure of the counting function of sparse context-free languages , 2006, Theor. Comput. Sci..

[14]  Berndt Farwer,et al.  ω-automata , 2002 .

[15]  M. W. Shields An Introduction to Automata Theory , 1988 .

[16]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[17]  Michel Latteux,et al.  On Bounded Context-free Languages , 1984, J. Inf. Process. Cybern..

[18]  Flavio D'Alessandro,et al.  On the Growth of Context-Free Languages , 2008, J. Autom. Lang. Comb..

[19]  Lucian Ilie,et al.  A characterization of poly-slender context-free languages , 2000, RAIRO Theor. Informatics Appl..

[20]  R. E. Sm A Regularity Test for Pushdown Machines , 2004 .

[21]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.