Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity.

Microcavity and whispering gallery mode (WGM) biosensors derive their sensitivity from monitoring frequency shifts induced by protein binding at sites of highly confined field intensities, where field strengths can be further amplified by excitation of plasmon resonances in nanoparticle layers. Here, we propose a mechanism based on optical trapping of a protein at the site of plasmonic field enhancements for achieving ultra sensitive detection in only microliter-scale sample volumes, and in real-time. We demonstrate femto-Molar sensitivity corresponding to a few 1000 s of macromolecules. Simulations based on Mie theory agree well with the optical trapping concept at plasmonic 'hotspots' locations.

[1]  Hongxing Xu,et al.  Surface-plasmon-enhanced optical forces in silver nanoaggregates. , 2002, Physical review letters.

[2]  T. Kunitake,et al.  Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization , 1999 .

[3]  Byoungho Lee,et al.  Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors , 2011, Sensors.

[4]  S. Arnold,et al.  Shift of whispering-gallery modes in microspheres by protein adsorption. , 2003, Optics letters.

[5]  Stephen Holler,et al.  Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection , 2011 .

[6]  Heather K Hunt,et al.  Determination of binding kinetics using whispering gallery mode microcavities. , 2011, Applied physics letters.

[7]  Melik C. Demirel,et al.  Nanoparticle-based protein detection by optical shift of a resonant microcavity , 2002, 1108.2337.

[8]  D. Gill,et al.  Optical sensing of biomolecules using microring resonators , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  M. Demirel,et al.  Stimuli responsive release of metalic nanoparticles on semiconductor substrates. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[10]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[11]  John Gohring,et al.  Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor , 2010 .

[12]  S. Arnold,et al.  Single virus detection from the reactive shift of a whispering-gallery mode , 2008, Proceedings of the National Academy of Sciences.

[13]  D. Braun,et al.  Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities. , 2003, Biophysical journal.

[14]  M. Demirel,et al.  Bio-organism sensing via surface enhanced Raman spectroscopy on controlled metal/polymer nanostructured substrates , 2009, Biointerphases.

[15]  D. Mackowski,et al.  Calculation of total cross sections of multiple-sphere clusters , 1994 .

[16]  Svetlana V. Boriskina,et al.  Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits , 2011, Proceedings of the National Academy of Sciences.

[17]  R. Baets,et al.  Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. , 2007, Optics express.

[18]  Y L Xu,et al.  Electromagnetic scattering by an aggregate of spheres. , 1995, Applied optics.

[19]  Dieter Braun,et al.  Protein detection by optical shift of a resonant microcavity , 2002 .

[20]  Xiaoru Zhang,et al.  Hybridization biosensor using diaquabis[N-(2-pyridinylmethyl)benzamide-κ2N,O]-cadmium(II) dinitrate as a new electroactive indicator for detection of human hepatitis B virus DNA , 2007 .

[21]  Abraham J. Qavi,et al.  Label-free technologies for quantitative multiparameter biological analysis , 2009, Analytical and bioanalytical chemistry.

[22]  S. Ozdemir,et al.  Detecting single viruses and nanoparticles using whispering gallery microlasers. , 2011, Nature nanotechnology.

[23]  Svetlana V. Boriskina,et al.  Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates , 2011, Optics express.

[24]  S. Helali,et al.  Immobilization of specific antibody on SAM functionalized gold electrode for rabies virus detection by electrochemical impedance spectroscopy , 2008 .

[25]  Adam L. Washburn,et al.  Quantitative, label-free detection of five protein biomarkers using multiplexed arrays of silicon photonic microring resonators. , 2010, Analytical chemistry.

[26]  Utkan Demirci,et al.  Quantum dot-based HIV capture and imaging in a microfluidic channel. , 2009, Biosensors & bioelectronics.

[27]  M. Demirel,et al.  Fabrication and Use of Electroless Plated Polymer Surface-Enhanced Raman Spectroscopy Substrates for Viral Gene Detection , 2010 .

[28]  E. Kroon,et al.  Use of atomic force microscopy as a diagnostic tool to identify orthopoxvirus. , 2007, Journal of virological methods.

[29]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[30]  Romain Quidant,et al.  Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field. , 2005, Optics letters.

[31]  James J Hickman,et al.  Whispering gallery mode biosensor quantification of fibronectin adsorption kinetics onto alkylsilane monolayers and interpretation of resultant cellular response. , 2012, Biomaterials.

[32]  Melik C Demirel,et al.  Quantitative analysis of creatinine in urine by metalized nanostructured parylene. , 2010, Journal of biomedical optics.

[33]  Adam L. Washburn,et al.  Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads. , 2011, Lab on a chip.

[34]  A. Minton,et al.  Adsorption of globular proteins on locally planar surfaces: models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria. , 1996, Biophysical journal.

[35]  K. Vahala,et al.  High sensitivity nanoparticle detection using optical microcavities , 2011, Proceedings of the National Academy of Sciences.

[36]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[37]  George C. Schatz,et al.  Combining micron-size glass spheres with silver nanoparticles to produce extraordinary field enhancements for surface-enhanced raman scattering applications , 2006 .

[38]  Luca Dal Negro,et al.  Photonic-plasmonic scattering resonances in deterministic aperiodic structures. , 2008, Nano letters.

[39]  A. McPherson,et al.  Atomic Force Microscopy Investigation of Human Immunodeficiency Virus (HIV) and HIV-Infected Lymphocytes , 2003, Journal of Virology.

[40]  Stefan Seeger,et al.  Understanding protein adsorption phenomena at solid surfaces. , 2011, Advances in colloid and interface science.

[41]  Joachim Knittel,et al.  Detection limits in whispering gallery biosensors with plasmonic enhancement , 2011 .

[42]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[43]  M. Mascini,et al.  Development of combined DNA-based piezoelectric biosensors for the simultaneous detection and genotyping of high risk Human Papilloma Virus strains. , 2007, Clinica chimica acta; international journal of clinical chemistry.

[44]  Thomas A Horbett,et al.  Protein interactions with surfaces: Computational approaches and repellency. , 2011, Current opinion in chemical biology.

[45]  Frank Vollmer,et al.  Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[46]  Stefan Kruszewski,et al.  Study of SERS efficiency of metallic colloidal systems , 2007 .

[47]  B. Reinhard,et al.  Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules. , 2012, ACS nano.

[48]  Lan Yang,et al.  On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2010 .

[49]  D. Meisel,et al.  Adsorption and surface-enhanced Raman of dyes on silver and gold sols , 1982 .

[50]  Abraham J. Qavi,et al.  Multiplexed detection and label-free quantitation of microRNAs using arrays of silicon photonic microring resonators. , 2010, Angewandte Chemie.

[51]  Andrew G. Glen,et al.  APPL , 2001 .

[52]  Gundula Piechotta,et al.  Electrical biochip technology—a tool for microarrays and continuous monitoring , 2003, Analytical and bioanalytical chemistry.

[53]  M. Demirel,et al.  Surface‐Enhanced Raman Detection on Metalized Nanostructured Poly(p‐xylylene) Films , 2008 .