Novel materials for fabrication and encapsulation of OLEDs

Around 20% of the electrical power generated on the planet is consumed inefficiently in lighting application. With the running out of the fossil fuels; lighting utilization will seriously contribute to the worldwide energy problem in the approaching future. Hence measures are to be taken right from this instant in order to conquer the power shortage problem by efficiently utilizing the available power. White organic light-emitting diodes (WOLEDs) and displays represent the next generation energy-saving light source to alleviate the energy crisis. Within the last decade OLEDs have become an internationally highly recognized unique area light source, which has immense potential for the recent display applications and paves a novel path to create white light. This paper reflects the recent advances in the OLED materials and the critical tactics employed in designing the anatomy of OLED devices for energy-saving solid-state lighting (SSL) towards lighting revolution. Novel transparency electrodes for flexible OLEDs, the stability of OLEDs, topical progress regarding various materials used for different layers to fabricate eco friendly and energy efficient OLEDs by innovative fabrication techniques and the necessity of encapsulation are also discussed. In addition, the ongoing challenges and future perspectives of this research frontier with certain measures that can be employed to reduce the driving voltage, minimize the degradation issues and augmentation of their life time are illustrated. Once we accomplish the said challenges, OLEDs can be considered as next generation flat panel displays and solid state lighting sources, which would proffer a world of expanding opportunities in the field of lighting.

[1]  Tobin J. Marks,et al.  Indium Tin Oxide Alternatives—High Work Function Transparent Conducting Oxides as Anodes for Organic Light‐Emitting Diodes , 2001 .

[2]  H. Bässler,et al.  Triplet states in organic semiconductors , 2009 .

[3]  Stephen R. Forrest,et al.  White Light Emission Using Triplet Excimers in Electrophosphorescent Organic Light‐Emitting Devices , 2002 .

[4]  B. Wei,et al.  Chromatic-stability white organic light emitting diodes based on phosphorescence doped electron transport layer , 2014 .

[5]  Xiabin Jing,et al.  Pure red electrophosphorescent organic light-emitting diodes based on a new iridium complex , 2005 .

[6]  Q. Su,et al.  LUMINESCENCE AND ENERGY MIGRATION IN THE OXYAPATITE CA2GD8(SIO4)6O2 DOPED WITH SEVERAL RARE-EARTH AND MERCURY-LIKE IONS , 1994 .

[7]  Qidai Chen,et al.  Improved efficiency of indium-tin-oxide-free flexible organic light-emitting devices , 2014 .

[8]  G. Gigli,et al.  Influencing the Spectral Stability and the Electroluminescence Behavior of New Blue-Emitting Bifluorene-Based Materials by the 7,7‘-Functionalization of the Core , 2008 .

[9]  Martin Pfeiffer,et al.  Interface electronic structure of organic semiconductors with controlled doping levels , 2001 .

[10]  Xurong Xu,et al.  Voltage-dependent recombination region movement in organic light-emitting diodes (OLEDs) based on a europium complex-doped polymer , 2000 .

[11]  S. Bernhard,et al.  Synthetically tailored excited states: phosphorescent, cyclometalated iridium(III) complexes and their applications. , 2006, Chemistry.

[12]  T. Guo,et al.  Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT:PSS transparent conducting film , 2014 .

[13]  A. Heeger,et al.  Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials , 2001, Angewandte Chemie.

[14]  Stephen Stinson Fine Chemicals Strive To Expand: Fine chemicals producers seek to broaden their involvement in development of drugs and other active ingredients , 2000 .

[15]  Kazuhiro Kudo,et al.  Field Effect Measurement of Organic Dye Films , 1984 .

[16]  Michel Schaer,et al.  Effects of doping in polymer light‐emitting diodes , 1995 .

[17]  Stephen R. Forrest,et al.  White Organic Light‐Emitting Devices for Solid‐State Lighting , 2004 .

[18]  Qibing Pei,et al.  Conjugated polymers and the bending cantilever method: Electrical muscles and smart devices , 1992 .

[19]  H. Shim,et al.  The pure red light-emitting fluorene-based copolymers by introducing low energy band-gap dyes , 2006 .

[20]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[21]  H. Chan,et al.  Investigation of the sites of dark spots in organic light-emitting devices , 2000 .

[22]  Hari Singh Nalwa,et al.  Handbook of advanced electronic and photonic materials and devices , 2001 .

[23]  Pengfei Wang,et al.  Highly Efficient Non‐Doped Blue Organic Light‐Emitting Diodes Based on Fluorene Derivatives with High Thermal Stability , 2005 .

[24]  M. Fujihira,et al.  Improved drive voltages of organic electroluminescent devices with an efficient p-type aromatic diamine hole-injection layer , 2000 .

[25]  J. Nunzi,et al.  Electrode interface effects on indium–tin–oxide polymer/metal light emitting diodes , 1996 .

[26]  Organic light-emitting diodes with AZO films as electrodes , 2000 .

[27]  Jun Lin,et al.  Green electroluminescent device with a terbium β-diketonate complex as emissive center , 2002 .

[28]  S. Dhoble,et al.  Development of electroluminescence cell using a Eu0.5Y0.5(TTA)3Phen organic luminescent complex , 2013 .

[29]  M. N. Kamalasanan,et al.  White organic light-emitting diodes based on blue fluorescent bis(2-(2-hydroxyphenyl)benzoxazolate)zinc [Zn(hpb)2] doped with DCM dye , 2009 .

[30]  Hiroshi Inada,et al.  Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4‘‐tris(3‐methylphenylphenylamino)triphenylamine, as a hole transport material , 1994 .

[31]  S. Shaheen,et al.  Highly efficient and bright organic electroluminescent devices with an aluminum cathode , 1997 .

[32]  J. Kalinowski,et al.  Mixing of molecular exciton and excimer phosphorescence to tune color and efficiency of organic LEDs , 2010 .

[33]  Hany Aziz,et al.  Simultaneous electroluminescence and photoluminescence aging studies of tris(8-hydroxyquinoline) aluminum-based organic light-emitting devices , 2001 .

[34]  Zakya H. Kafafi,et al.  High efficiency molecular organic light-emitting diodes based on silole derivatives and their exciplexes , 2003 .

[35]  Tetsuo Tsutsui,et al.  Blue-Light-Emitting Organic Electroluminescent Devices with Oxadiazole Dimer Dyes as an Emitter , 1992 .

[36]  Pure blue emission from undoped organic light emitting diode based on anthracene derivative , 2008 .

[37]  Kok Wai Wong,et al.  CHARACTERIZATION OF TREATED INDIUM-TIN-OXIDE SURFACES USED IN ELECTROLUMINESCENT DEVICES , 1999 .

[38]  Stephen R. Forrest,et al.  Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts , 1998 .

[39]  Zhang Hongfang,et al.  Green electroluminescence generated from the thin film based on a soluble lanthanide complex , 2000 .

[40]  W. Howard,et al.  Better displays with organic films. , 2004, Scientific American.

[41]  Tetsuo Tsutsui,et al.  Organic Electroluminescent Device with a Three-Layer Structure , 1988 .

[42]  Tetsuo Tsutsui,et al.  Electroluminescence in Organic Films with Three-Layer Structure , 1988 .

[43]  Karsten Walzer,et al.  Ultrastable and efficient red organic light emitting diodes with doped transport layers , 2006 .

[44]  I. Kityk,et al.  Blue electroluminescence in 1H-pyrazoloquinoline derivatives , 2006 .

[45]  Yong Qiu,et al.  Blue phosphorescent dye as sensitizer and emitter for white organic light-emitting diodes , 2004 .

[46]  N. Thejo Kalyani,et al.  Organic light emitting diodes: Energy saving lighting technology—A review , 2012 .

[47]  Efficient red electrophosphorescent organic light-emitting diodes based on the new sensitized heteroleptic tris-cyclometalated Ir(III) complexes , 2009 .

[48]  N. Zhang,et al.  A new europium(III)-β-diketonate complex based on diphenylethyne as red phosphors applied in LED , 2013 .

[49]  Alberto Piqué,et al.  Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices , 2000 .

[50]  H. Xia,et al.  Preparation and luminescence characteristics of LiYF4: Tm3+/Dy3+ single crystals for white-light LEDs , 2013, Journal of Materials Science.

[51]  Ta-Ya Chu,et al.  Highly efficient and stable inverted bottom-emission organic light emitting devices , 2006 .

[52]  Comprar Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications | Fritz Vögtle | 9783527320660 | Wiley , 2009 .

[53]  Weiqi Wang,et al.  Correlation between dark spot growth and pinhole size in organic light-emitting diodes , 2001 .

[54]  Lee-Mi Do,et al.  Growth of dark spots by interdiffusion across organic layers in organic electroluminescent devices , 1996 .

[55]  Martin Pfeiffer,et al.  LOW VOLTAGE ORGANIC LIGHT EMITTING DIODES FEATURING DOPED PHTHALOCYANINE AS HOLE TRANSPORT MATERIAL , 1998 .

[56]  Tetsuo Tsutsui,et al.  Organic electroluminescent device having a hole conductor as an emitting layer , 1989 .

[57]  T. Miyamoto,et al.  Properties of Germanium-Doped Indium Oxide Thin Films Prepared by DC Magnetron Sputtering , 2000 .

[58]  Blue organic light-emitting diodes with low driving voltage and maximum enhanced power efficiency based on buffer layer MoO3 , 2009 .

[59]  Electrical and Optical Properties of Phosphorescent Organic Light-Emitting Devices with a TAPC Host , 2011 .

[60]  S. Dhoble,et al.  Photoluminescence of Alq3 - and Tb-activated aluminium-tris(8-hydroxyquinoline) complex for blue chip-excited OLEDs. , 2013, Luminescence : the journal of biological and chemical luminescence.

[61]  Junji Kido,et al.  Organo lanthanide metal complexes for electroluminescent materials. , 2002, Chemical reviews.

[62]  Junji Kido,et al.  Fabrication of highly efficient organic electroluminescent devices , 1998 .

[63]  Yi-Ling Luo,et al.  Synthesis and fluorescence properties of the mixed complexes of Eu(III) with polymer ligand and thenoyl trifluoroacetone , 1997 .

[64]  P. V. Varde,et al.  Light emitting diodes reliability review , 2012, Microelectron. Reliab..

[65]  T. Mizutani,et al.  Encapsulation of organic light-emitting diode using thermal chemical-vapour-deposition polymer film , 2001 .

[66]  Guang Shao,et al.  Diphenylethyne based β-diketonate europium(III) complexes as red phosphors applied in LED , 2012 .

[67]  Khizar-ul-Haq,et al.  Blue organic light-emitting diodes with low driving voltage and enhanced power efficiency based on MoO3 as hole injection layer and optimized charge balance , 2010 .

[68]  Jean-Marie Lehn,et al.  Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .

[69]  Jongwook Park,et al.  New deep-blue emitting materials based on fully substituted ethylene derivatives , 2007 .

[70]  Wenping Hu,et al.  Efficient red electroluminescence from devices having multilayers of a europium complex , 2000 .

[71]  W. Wang,et al.  Degradation of organic light-emitting devices due to formation and growth of dark spots , 2001 .

[72]  Stephen R. Forrest,et al.  Efficient Organic Electrophosphorescent White‐Light‐Emitting Device with a Triple Doped Emissive Layer , 2004 .

[73]  C.‐c. Wu,et al.  Efficient Organic Blue‐Light‐Emitting Devices with Double Confinement on Terfluorenes with Ambipolar Carrier Transport Properties , 2004 .

[74]  S. Moharil,et al.  Tunable blue photoluminescence from methoxy substituted diphenyl quinoline , 2007 .

[75]  C.-H. Chen,et al.  Recent progress of molecular organic electroluminescent materials and devices , 2002 .

[76]  Hartmut Yersin,et al.  Triplet emitters for OLED applications. Mechanisms of exciton trapping and control of emission properties , 2004 .

[77]  Junji Kido,et al.  Highly Efficient Organic Blue‐and White‐Light‐Emitting Devices Having a Carrier‐ and Exciton‐Confining Structure for Reduced Efficiency Roll‐Off , 2008 .

[78]  Martin Pfeiffer,et al.  Low-voltage organic electroluminescent devices using pin structures , 2002 .

[79]  Chih‐Hao Chang,et al.  Efficient phosphorescent white OLEDs with high color rendering capability , 2010 .

[80]  Z. Popović,et al.  Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting devices , 1998 .

[81]  G. Bazan,et al.  Synthesis, morphology and optoelectronic properties of tris[(N-ethylcarbazolyl)(3′,5′-hexyloxybenzoyl)methane](phenanthroline)europium , 2000 .

[82]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[83]  T. Sasaoka,et al.  24.4L: Late‐News Paper: A 13.0‐inch AM‐OLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC) , 2001 .

[84]  Silu Tao,et al.  Efficient blue organic light-emitting devices with a new bipolar emitter , 2011 .

[85]  O. Salata,et al.  Enhanced electroluminescent efficiency from spin-coated europium(III) organic light-emitting device , 2002 .

[86]  Gregor Schwartz,et al.  White organic light-emitting diodes with fluorescent tube efficiency , 2009, Nature.

[87]  Feng Li,et al.  White organic light-emitting devices using a phosphorescent sensitizer , 2003 .

[88]  Qianming Wang Side-chain substituent effects on green luminescence of terbium activated hybrid xerogels , 2009 .

[89]  Akira J. Ikushima,et al.  Observation of degradation processes of Al electrodes in organic electroluminescence devices by electroluminescence microscopy, atomic force microscopy, scanning electron microscopy, and Auger electron spectroscopy , 1994 .

[90]  T. Főrster,et al.  10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation , 1959 .

[91]  Blue emitting KSCN:xCe phosphor for solid state lighting , 2014 .

[92]  W. R. Salaneck,et al.  FLUORINE TIN OXIDE AS AN ALTERNATIVE TO INDIUM TIN OXIDE IN POLYMER LEDS , 1998 .

[93]  A. Mikami,et al.  35‐3: High Efficiency Phosphorescent Organic Light‐Emitting Devices Coupled with Lateral Color‐Conversion Layer , 2006 .

[94]  G. Vanoli,et al.  Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning? , 2013 .

[95]  Yun Chi,et al.  High-color-rendering pure-white phosphorescent organic light-emitting devices employing only two complementary colors , 2010 .

[96]  É. Boisselier,et al.  Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. , 2010, Chemical reviews.

[97]  D. Zou,et al.  Study on the degradation mechanism of organic light-emitting diodes (OLEDs) , 1997 .

[98]  E. Kang,et al.  Synthesis and Luminescence Properties of Novel Eu-Containing Copolymers Consisting of Eu(III)−Acrylate−β-Diketonate Complex Monomers and Methyl Methacrylate , 2000 .

[99]  Ch Chan,et al.  Automation Technology for Fabric Inspection System , 1998 .

[100]  Xu,et al.  Degradation mechanism of small molecule-based organic light-emitting devices , 1999, Science.

[101]  Yongsheng Wang,et al.  Reduction of driving voltage in organic light-emitting diodes with molybdenum trioxide in CuPc/NPB interface , 2010 .

[102]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[103]  P. Magnante,et al.  Electroluminescence in Organic Crystals , 1963 .

[104]  Robert A Norwood,et al.  CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES 3202 Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study , 1998 .

[105]  R. Longo,et al.  Spectroscopic properties and design of highly luminescent lanthanide coordination complexes , 2000 .

[106]  C. Shu,et al.  Spirobifluorene-based pyrazoloquinolines: efficient blue electroluminescent materials , 2004 .

[107]  A. Rostami,et al.  Reduction of guided waves in ITO/glass interface of white organic light emitting diodes (WOLEDs): Layer optimization , 2013 .

[108]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[109]  K. Meerholz,et al.  Deep blue organic light-emitting diodes based on triphenylenes , 2010 .

[110]  Liduo Wang,et al.  Highly efficient solution-processed blue-green to red and white light-emitting diodes using cationic iridium complexes as dopants , 2010 .

[111]  A. Lempicki,et al.  Optical maser action in europium benzoylacetonate , 1963 .

[112]  Wenlian Li,et al.  The fluorescence of transparent polymer films of rare earth complexes , 1986 .

[113]  C. Tang,et al.  Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode , 1997 .

[114]  G. Cheng,et al.  White organic light-emitting devices based on 4,4′-bis(2,2′-diphenyl vinyl)-1,1′-biphenyl and phosphorescence sensitized 5,6,11,12-tetraphenylnaphthacene , 2005 .

[115]  L. Carlos,et al.  White OLED based on a temperature sensitive Eu3+/Tb3+ β-diketonate complex , 2014 .

[116]  High-efficiency red, green and blue phosphorescent homojunction organic light-emitting diodes based on bipolar host materials , 2011 .

[117]  Akiyoshi Mikami,et al.  High-Efficiency Color and White Organic Light-Emitting Devices Prepared on Flexible Plastic Substrates , 2005 .

[118]  Fujun Zhang,et al.  Key issues and recent progress of high efficient organic light-emitting diodes , 2013 .

[119]  Takeshi Saito,et al.  Nuclei of dark spots in organic EL devices: detection by DFM and observation of the microstructure by TEM , 1997 .

[120]  S. J. Dhoble,et al.  Novel approaches for energy efficient solid state lighting by RGB organic light emitting diodes – A review , 2014 .

[121]  Supachart Chungpaibulpatana,et al.  Assessment of potential energy saving using cluster analysis: A case study of lighting systems in buildings , 2012 .

[122]  Wai-Yeung Wong,et al.  New design tactics in OLEDs using functionalized 2-phenylpyridine-type cyclometalates of iridium(III) and platinum(II). , 2011, Chemistry, an Asian journal.

[123]  T. Riedl,et al.  Highly efficient simplified organic light emitting diodes , 2007 .

[124]  K. Meerholz,et al.  Organische Leuchtdioden: Bilderzeugung , 2005 .

[125]  Bruno Ullrich,et al.  Realization of a blue-light-emitting device using poly(p-phenylene)†‡ , 1992 .

[126]  B. Ju,et al.  Tunable emission of polymer light emitting diodes bearing green-emitting Ir(III) complexes: The structural role of 9-((6-(4-fluorophenyl)pyridin-3-yl)methyl)-9H-carbazole ligands , 2010 .

[127]  Su Qiang,et al.  A STUDY OF SITE OCCUPATION OF EU3+ IN ME2Y8(SIO4)6O2 (ME=MG, CA, SR) , 1994 .

[128]  E. Schubert,et al.  Solid-state lighting—a benevolent technology , 2006 .

[129]  S. T. Lee,et al.  Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers , 1999 .

[130]  S. J. Dhoble,et al.  Importance of Eco-Friendly OLED Lighting , 2014 .

[131]  M. M. Aman,et al.  Analysis of the performance of domestic lighting lamps , 2013 .

[132]  Young Kwan Kim,et al.  A highly efficient deep blue fluorescent OLED based on diphenylaminofluorenylstyrene-containing emitting materials , 2010 .

[133]  Guijiang Zhou,et al.  Highly Efficient Phosphorescent Materials Based on Platinum Complexes and Their Application in Organic Light-Emitting Devices (OLEDs) , 2013 .

[134]  L.F. Weber,et al.  History of the plasma display panel , 2006, IEEE Transactions on Plasma Science.

[135]  Shiyong Liu,et al.  White light emission from exciplex using tris-(8-hydroxyquinoline)aluminum as chromaticity-tuning layer , 2001 .

[136]  Y. Y. Li,et al.  Highly efficient single-layer organic light-emitting devices using cationic iridium complex as host , 2013 .

[137]  George R. Newkome,et al.  Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol , 1985 .

[138]  Alan G. MacDiarmid,et al.  AN IODINE-DOPED POLYMER LIGHT-EMITTING DIODE , 1997 .

[139]  Chunhui Huang,et al.  Highly efficient, orange–red organic light-emitting diodes using a series of green-emission iridium complexes as hosts , 2009 .

[140]  R. Friend,et al.  New semiconductor device physics in polymer diodes and transistors , 1988, Nature.

[141]  Samson A. Jenekhe,et al.  New Solution‐Processable Electron Transport Materials for Highly Efficient Blue Phosphorescent OLEDs , 2011 .

[142]  Stephen R. Forrest,et al.  Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting Devices , 2002 .

[143]  Ian D. Parker,et al.  Carrier tunneling and device characteristics in polymer light‐emitting diodes , 1994 .

[144]  Katsutoshi Nagai,et al.  Bright red light‐emitting organic electroluminescent devices having a europium complex as an emitter , 1994 .

[145]  S. R. Forrest,et al.  High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer , 2000, Nature.

[146]  Tomohiko Mori,et al.  Improving the thermal stability of organic light-emitting diodes by using a modified phthalocyanine layer , 2002 .

[147]  M. Kimura,et al.  Influence of hole transporting material on device performance in organic light-emitting diode , 2000 .

[148]  George R. Newkome,et al.  MICELLES. PART 1. CASCADE MOLECULES: A NEW APPROACH TO MICELLES. A (27)-ARBOROL , 1985 .

[149]  J. Kim,et al.  White light emission from blue InGaN LED precoated with conjugated copolymer/quantum dots as hybrid phosphor , 2009 .

[150]  D. Moses,et al.  Single-component light-emitting electrochemical cell with improved stability , 2003 .

[151]  Jing Feng,et al.  High-performance blue electroluminescent devices based on hydroxyphenyl-pyridine beryllium complex , 2001 .

[152]  Yuguang Ma,et al.  Exceedingly efficient deep-blue electroluminescence from new anthracenes obtained using rational molecular design , 2008 .

[153]  Yoshiharu Sato,et al.  Effect of aromatic diamines as a cathode interface layer , 1997 .

[154]  Fumio Sato,et al.  High-efficiency white phosphorescent organic light-emitting devices with greenish-blue and red-emitting layers , 2003 .

[155]  L. Do,et al.  Encapsulation of organic light-emitting devices by means of photopolymerized polyacrylate films , 2004 .

[156]  Yoshiharu Sato,et al.  Stability of Organic Electroluminescent Diodes , 1994 .

[157]  C. M. Donegá,et al.  Europium(III) mixed complexes with β-diketones and o-phenanthroline-N-oxide as promising light-conversion molecular devices , 1996 .

[158]  Ulrich S. Schubert,et al.  New Trends in the Use of Transition Metal–Ligand Complexes for Applications in Electroluminescent Devices , 2005 .

[159]  Katsutoshi Nagai,et al.  White light‐emitting organic electroluminescent devices using the poly(N‐vinylcarbazole) emitter layer doped with three fluorescent dyes , 1994 .

[160]  Jan Birnstock,et al.  High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers , 2004 .

[161]  Katsutoshi Nagai,et al.  Multilayer White Light-Emitting Organic Electroluminescent Device , 1995, Science.

[162]  Ching Wan Tang,et al.  Organic electroluminescent devices with improved stability , 1996 .

[163]  Ioannis Petrou,et al.  Θρησκευτικός πλουραλισμός και διαθρησκειακός διάλογος στη σύγχρονη κοινωνία , 2013 .

[164]  Chunhui Huang,et al.  Photoluminescence and electroluminescence of a series of terbium complexes , 1999 .

[165]  G. Gigli,et al.  White light emission from blends of blue-emitting organic molecules: A general route to the white organic light-emitting diode? , 2001 .

[166]  Daoben Zhu,et al.  A new blue light-emitting material , 2001 .

[167]  Bernard Kippelen,et al.  Efficient green OLED devices with an emissive layer comprised of phosphor-doped carbazole/bis-oxadiazole side-chain polymer blends , 2011 .

[168]  Jorge Morgado,et al.  Highly Photostable Luminescent Poly(ε-caprolactone)siloxane Biohybrids Doped with Europium Complexes , 2007 .

[169]  Jenq-Neng Hwang,et al.  Multicolored Electrochromism in Polymers: Structures and Devices , 2004 .

[170]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .

[171]  Shui-Tong Lee,et al.  Enhanced electroluminescence of europium(III) complex by terbium(III) substitution in organic light emitting diodes , 2000 .

[172]  Daoben Zhu,et al.  Soluble Europium Complexes for Light-Emitting Diodes , 2000 .

[173]  C. Hawker,et al.  Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules , 1990 .

[174]  Young-eun Kim,et al.  Enhanced quantum efficiency in polymer electroluminescence devices by inserting a tunneling barrier formed by Langmuir–Blodgett films , 1996 .

[175]  George G. Malliaras,et al.  Role of CsF on electron injection into a conjugated polymer , 2000 .

[176]  Yu-Tai Tao,et al.  High Tg blue emitting materials for electroluminescent devices , 2005 .

[177]  Stephen R. Forrest,et al.  High-efficiency white organic light emitting devices with three separate phosphorescent emission layers , 2007 .

[178]  G. F. Sá,et al.  Full-color simulation in a multi-doped glass and controlled quenching of luminescence using Er (III) as a suppressor for a tunable device , 1997 .

[179]  Lorenz M. Hilty,et al.  Environmental impacts of lighting technologies — Life cycle assessment and sensitivity analysis , 2011 .

[180]  Lianhui Wang,et al.  A novel high photoluminescence efficiency polymer incorporated with pendant europium complexes , 2001 .

[181]  L. Do,et al.  Morphological change in the degradation of Al electrode surfaces of electroluminescent devices by fluorescence microscopy and AFM , 1996 .

[182]  Stephen R. Forrest,et al.  Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host , 2000 .

[183]  Cher Ming Tan,et al.  Analysis of humidity effects on the degradation of high-power white LEDs , 2009, Microelectron. Reliab..

[184]  P. Destruel,et al.  Organic and polymer-based light-emitting diodes , 2001 .

[185]  H. Antoniadis,et al.  Formation and growth of black spots in organic light‐emitting diodes , 1996 .

[186]  Fabrication of red organic light emitting diodes (OLEDs) using Eu x Y (1-x) (TTA) 3 Phen organic complexes for solid state lighting , 2011 .

[187]  Z. Popović,et al.  DEGRADATION PROCESSES AT THE CATHODE/ORGANIC INTERFACE IN ORGANIC LIGHT EMITTING DEVICES WITH MG:AG CATHODES , 1998 .

[188]  S. Forrest,et al.  Reliability and degradation of organic light emitting devices , 1994 .

[189]  Ji-Hoon Lee,et al.  New blue emitting indenopyrazine derivatives for OLEDs: Improving the EL properties through substitution effects by using terphenyl side group , 2010 .

[190]  L. Do,et al.  Crystallization of organic thin films for electroluminescent devices , 1996 .

[191]  K. Jung,et al.  High performance organic-inorganic hybrid barrier coating for encapsulation of OLEDs , 2011 .

[192]  W. G. Schneider,et al.  RECOMBINATION RADIATION IN ANTHRACENE CRYSTALS , 1965 .

[193]  Karsten Walzer,et al.  Near-infrared organic light emitting diodes based on heavy metal phthalocyanines , 2008 .

[194]  Mohammad Yusri Hassan,et al.  A review on lighting control technologies in commercial buildings, their performance and affecting factors , 2014 .

[195]  J. Segura The chemistry of electroluminescent organic materials , 1998 .

[196]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.