PLAZA 3.0: an access point for plant comparative genomics

Comparative sequence analysis has significantly altered our view on the complexity of genome organization and gene functions in different kingdoms. PLAZA 3.0 is designed to make comparative genomics data for plants available through a user-friendly web interface. Structural and functional annotation, gene families, protein domains, phylogenetic trees and detailed information about genome organization can easily be queried and visualized. Compared with the first version released in 2009, which featured nine organisms, the number of integrated genomes is more than four times higher, and now covers 37 plant species. The new species provide a wider phylogenetic range as well as a more in-depth sampling of specific clades, and genomes of additional crop species are present. The functional annotation has been expanded and now comprises data from Gene Ontology, MapMan, UniProtKB/Swiss-Prot, PlnTFDB and PlantTFDB. Furthermore, we improved the algorithms to transfer functional annotation from well-characterized plant genomes to other species. The additional data and new features make PLAZA 3.0 (http://bioinformatics.psb.ugent.be/plaza/) a versatile and comprehensible resource for users wanting to explore genome information to study different aspects of plant biology, both in model and non-model organisms.

[1]  Mihaela M. Martis,et al.  A physical, genetic and functional sequence assembly of the barley genome , 2012, Nature.

[2]  Daniel R. Zerbino,et al.  Ensembl 2014 , 2013, Nucleic Acids Res..

[3]  S. Jackson,et al.  The First 50 Plant Genomes , 2013 .

[4]  David Haussler,et al.  The UCSC Genome Browser database: 2014 update , 2013, Nucleic Acids Res..

[5]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[6]  Mathieu Blanchette,et al.  The Capsella rubella genome and the genomic consequences of rapid mating system evolution , 2013, Nature Genetics.

[7]  Stephen Gatesy,et al.  Standing the test of time , 2003, Nature.

[8]  Ge Gao,et al.  PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors , 2013, Nucleic Acids Res..

[9]  R. Immink,et al.  Transfer of knowledge about flowering and vegetative propagation from model species to bulbous plants. , 2013, The International journal of developmental biology.

[10]  H. Bohnert,et al.  The genome of the extremophile crucifer Thellungiella parvula , 2011, Nature Genetics.

[11]  Lincoln Stein,et al.  Using GBrowse 2.0 to visualize and share next-generation sequence data , 2013, Briefings Bioinform..

[12]  David M. A. Martin,et al.  Genome sequence and analysis of the tuber crop potato , 2011, Nature.

[13]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[14]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[15]  Y. Saeys,et al.  GenomeView: a next-generation genome browser , 2011, Nucleic acids research.

[16]  R. Guigó,et al.  The genome of melon (Cucumis melo L.) , 2012, Proceedings of the National Academy of Sciences.

[17]  Dirk Inzé,et al.  GATEWAY vectors for Agrobacterium-mediated plant transformation. , 2002, Trends in plant science.

[18]  C. Kole,et al.  Arabidopsis Genome Initiative , 2016 .

[19]  Birgit Kersten,et al.  PlnTFDB: updated content and new features of the plant transcription factor database , 2009, Nucleic Acids Res..

[20]  Christian M. Zmasek,et al.  GreenPhylDB v2.0: comparative and functional genomics in plants , 2010, Nucleic Acids Res..

[21]  Robert D. Finn,et al.  InterPro in 2011: new developments in the family and domain prediction database , 2011, Nucleic acids research.

[22]  G. Theißen,et al.  FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes , 2013, Nature Communications.

[23]  Haibao Tang,et al.  Finding and Comparing Syntenic Regions among Arabidopsis and the Outgroups Papaya, Poplar, and Grape: CoGe with Rosids1[W] , 2008, Plant Physiology.

[24]  Richard D. Hayes,et al.  The genome of Eucalyptus grandis , 2014, Nature.

[25]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[26]  Tae-Ho Lee,et al.  PGDD: a database of gene and genome duplication in plants , 2012, Nucleic Acids Res..

[27]  Sebastian Proost,et al.  The flowering world: a tale of duplications. , 2009, Trends in plant science.

[28]  Rolf Apweiler,et al.  InterProScan: protein domains identifier , 2005, Nucleic Acids Res..

[29]  A. Paterson,et al.  Comparative Analysis of Miscanthus and Saccharum Reveals a Shared Whole-Genome Duplication but Different Evolutionary Fates[W] , 2014, Plant Cell.

[30]  S. Rhee,et al.  MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. , 2004, The Plant journal : for cell and molecular biology.

[31]  Richard M. Clark,et al.  The Arabidopsis lyrata genome sequence and the basis of rapid genome size change , 2011, Nature Genetics.

[32]  J. Poulain,et al.  The genome of the mesopolyploid crop species Brassica rapa , 2011, Nature Genetics.

[33]  Dong Li,et al.  Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations , 2012, Proceedings of the National Academy of Sciences.

[34]  Alexander Goesmann,et al.  The genome of the recently domesticated crop plant sugar beet (Beta vulgaris) , 2013, Nature.

[35]  W. J. Lucas,et al.  The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions , 2012, Nature Genetics.

[36]  Dan M. Bolser,et al.  Gramene 2013: comparative plant genomics resources , 2013, Nucleic Acids Res..

[37]  Christina E. Wells,et al.  The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution , 2013, Nature Genetics.

[38]  Daniel W. A. Buchan,et al.  The tomato genome sequence provides insights into fleshy fruit evolution , 2012, Nature.

[39]  Justin N. Vaughn,et al.  Reference genome sequence of the model plant Setaria , 2012, Nature Biotechnology.

[40]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[41]  Amborella Genome The Amborella Genome and the Evolution of Flowering Plants , 2013, Science.

[42]  Li Ni,et al.  The Gene Ontology's Reference Genome Project: A Unified Framework for Functional Annotation across Species , 2009, PLoS Comput. Biol..

[43]  Hervé Moreau,et al.  pico-PLAZA, a genome database of microbial photosynthetic eukaryotes. , 2013, Environmental microbiology.

[44]  Y. van de Peer,et al.  Dissecting Plant Genomes with the PLAZA Comparative Genomics Platform1[W] , 2011, Plant Physiology.

[45]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[46]  Y. van de Peer,et al.  PLAZA: A Comparative Genomics Resource to Study Gene and Genome Evolution in Plants[W] , 2009, The Plant Cell Online.

[47]  Damian Szklarczyk,et al.  eggNOG v4.0: nested orthology inference across 3686 organisms , 2013, Nucleic Acids Res..

[48]  Saravanaraj N. Ayyampalayam,et al.  The banana (Musa acuminata) genome and the evolution of monocotyledonous plants , 2012, Nature.

[49]  Y. van de Peer,et al.  i-ADHoRe 3.0—fast and sensitive detection of genomic homology in extremely large data sets , 2011, Nucleic acids research.

[50]  Takuji Sasaki,et al.  The map-based sequence of the rice genome , 2005, Nature.

[51]  Steven Maere,et al.  Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  Adi Doron-Faigenboim,et al.  Ecology, Evolution and Organismal Biology Publications Ecology, Evolution and Organismal Biology Repeated Polyploidization of Gossypium Genomes and the Evolution of Spinnable Cotton Fibres , 2022 .

[53]  Niranjan Nagarajan,et al.  The draft genome of sweet orange (Citrus sinensis) , 2012, Nature Genetics.

[54]  A. Séguin,et al.  Ancient signals: comparative genomics of green plant CDPKs. , 2014, Trends in plant science.