Clostridium difficile colitis: pathogenesis and host defence

Clostridium difficile is a major cause of intestinal infection and diarrhoea in individuals following antibiotic treatment. Recent studies have begun to elucidate the mechanisms that induce spore formation and germination and have determined the roles of C. difficile toxins in disease pathogenesis. Exciting progress has also been made in defining the role of the microbiome, specific commensal bacterial species and host immunity in defence against infection with C. difficile. This Review will summarize the recent discoveries and developments in our understanding of C. difficile infection and pathogenesis.

[1]  Adrianne N. Edwards,et al.  Initiation of sporulation in Clostridium difficile: a twist on the classic model. , 2014, FEMS microbiology letters.

[2]  Craig D. Ellermeier,et al.  PrsW Is Required for Colonization, Resistance to Antimicrobial Peptides, and Expression of Extracytoplasmic Function σ Factors in Clostridium difficile , 2011, Infection and Immunity.

[3]  Daniel J. Wilson,et al.  Diverse sources of C. difficile infection identified on whole-genome sequencing. , 2013, The New England journal of medicine.

[4]  C. Kelly,et al.  Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. , 2000, The New England journal of medicine.

[5]  G. Bell,et al.  Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT) , 2011, Proceedings of the National Academy of Sciences.

[6]  E. Kuijper,et al.  TcdC Does Not Significantly Repress Toxin Expression in Clostridium difficile 630ΔErm , 2012, PloS one.

[7]  Y. Oh,et al.  NF‐κB Activation Pathway is Essential for the Chemokine Expression in Intestinal Epithelial Cells Stimulated with Clostridium difficile Toxin A , 2006, Scandinavian journal of immunology.

[8]  J. Ballard,et al.  Variations in Virulence and Molecular Biology among Emerging Strains of Clostridium difficile , 2013, Microbiology and Molecular Reviews.

[9]  W. Petri,et al.  Immune responses to Clostridium difficile infection. , 2012, Trends in molecular medicine.

[10]  N. Fairweather,et al.  The Clostridium difficile spo0A Gene Is a Persistence and Transmission Factor , 2012, Infection and Immunity.

[11]  B. Dupuy,et al.  Clostridium difficile toxin expression is inhibited by the novel regulator TcdC , 2007, Molecular microbiology.

[12]  J. Stockman Treatment with Monoclonal Antibodies against Clostridium difficile Toxins , 2011 .

[13]  D. Vitkup,et al.  Hierarchical Evolution of the Bacterial Sporulation Network , 2010, Current Biology.

[14]  M. Palcic,et al.  Carbohydrate recognition by Clostridium difficile toxin A , 2006, Nature Structural &Molecular Biology.

[15]  A. Sonenshein,et al.  Bile Salts and Glycine as Cogerminants for Clostridium difficile Spores , 2008, Journal of bacteriology.

[16]  T. Dubois,et al.  Clostridium difficile: New Insights into the Evolution of the Pathogenicity Locus , 2015, Scientific Reports.

[17]  A. Ryan,et al.  A Role for TLR4 in Clostridium difficile Infection and the Recognition of Surface Layer Proteins , 2011, PLoS pathogens.

[18]  M. Tvede,et al.  Bacteriotherapy for chronic relapsing Clostridium difficile in six patients , 1989 .

[19]  Dae-Joong Kang,et al.  Bile salt biotransformations by human intestinal bacteria Published, JLR Papers in Press, November 18, 2005. , 2006, Journal of Lipid Research.

[20]  A. Pich,et al.  Human neutrophils are activated by a peptide fragment of Clostridium difficile toxin B presumably via formyl peptide receptor , 2015, Cellular microbiology.

[21]  P. Hylemon,et al.  Clostridium scindens baiCD and baiH genes encode stereo-specific 7α/7β-hydroxy-3-oxo-Δ4-cholenoic acid oxidoreductases , 2008 .

[22]  Julian Parkhill,et al.  The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome , 2006, Nature Genetics.

[23]  E. Pamer,et al.  Critical Role for MyD88-Mediated Neutrophil Recruitment during Clostridium difficile Colitis , 2012, Infection and Immunity.

[24]  A. Khoruts,et al.  Ursodeoxycholic Acid Inhibits Clostridium difficile Spore Germination and Vegetative Growth, and Prevents the Recurrence of Ileal Pouchitis Associated With the Infection , 2016, Journal of clinical gastroenterology.

[25]  L. Kyne,et al.  Germination efficiency of clinical Clostridium difficile spores and correlation with ribotype, disease severity and therapy failure. , 2013, Journal of medical microbiology.

[26]  S. Tenzer,et al.  Autocatalytic cleavage of Clostridium difficile toxin B , 2007, Nature.

[27]  Jinsong Sheng,et al.  Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity , 2015, Proceedings of the National Academy of Sciences.

[28]  Nora C. Toussaint,et al.  Loss of Microbiota-Mediated Colonization Resistance to Clostridium difficile Infection With Oral Vancomycin Compared With Metronidazole. , 2015, The Journal of infectious diseases.

[29]  B. Weimer,et al.  Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. , 2014, Cell host & microbe.

[30]  A. Sonenshein,et al.  The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. , 2011, Microbiology.

[31]  Joseph A. Sorg,et al.  Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination , 2015, Journal of bacteriology.

[32]  J. Heap,et al.  Precise Manipulation of the Clostridium difficile Chromosome Reveals a Lack of Association between the tcdC Genotype and Toxin Production , 2012, Applied and Environmental Microbiology.

[33]  A. Viale,et al.  Profound Alterations of Intestinal Microbiota following a Single Dose of Clindamycin Results in Sustained Susceptibility to Clostridium difficile-Induced Colitis , 2011, Infection and Immunity.

[34]  Antonio Ramos,et al.  Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: a randomized clinical trial. , 2015, JAMA.

[35]  P. Hylemon,et al.  Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium , 2012, Journal of Lipid Research.

[36]  V. Viswanathan,et al.  Clostridium difficile infection , 2012, Gut microbes.

[37]  W. Silen,et al.  Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. , 1958, Surgery.

[38]  Chris Sander,et al.  Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile , 2014, Nature.

[39]  N. Fairweather,et al.  Functional Characterization of Clostridium difficile Spore Coat Proteins , 2013, Journal of bacteriology.

[40]  V. Young,et al.  Acute infection of mice with Clostridium difficile leads to eIF2α phosphorylation and pro‐survival signalling as part of the mucosal inflammatory response , 2013, Immunology.

[41]  H. Boureau,et al.  Role of FliC and FliD Flagellar Proteins ofClostridium difficile in Adherence and Gut Colonization , 2001, Infection and Immunity.

[42]  G. Armstrong,et al.  Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. , 2008, Glycobiology.

[43]  J. Heap,et al.  The ClosTron: a universal gene knock-out system for the genus Clostridium. , 2007, Journal of microbiological methods.

[44]  R. Breaker,et al.  Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP , 2008, Science.

[45]  A. Witney,et al.  Comparative Phylogenomics of Clostridium difficile Reveals Clade Specificity and Microevolution of Hypervirulent Strains , 2006, Journal of bacteriology.

[46]  H. Feng,et al.  Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B , 2014, Cell Research.

[47]  M. Keighley,et al.  Identification of Clostridium difficile as a cause of pseudomembranous colitis. , 1978, British medical journal.

[48]  M. Henn,et al.  A Novel Microbiome Therapeutic Increases Gut Microbial Diversity and Prevents Recurrent Clostridium difficile Infection. , 2016, The Journal of infectious diseases.

[49]  C. Pothoulakis,et al.  gp96 Is a Human Colonocyte Plasma Membrane Binding Protein for Clostridium difficile Toxin A , 2008, Infection and Immunity.

[50]  Casey M. Theriot,et al.  Dynamics and Establishment of Clostridium difficile Infection in the Murine Gastrointestinal Tract , 2014, Infection and Immunity.

[51]  Adrianne N. Edwards,et al.  Conserved Oligopeptide Permeases Modulate Sporulation Initiation in Clostridium difficile , 2014, Infection and Immunity.

[52]  N. Fairweather,et al.  Antibiotic Treatment of Clostridium difficile Carrier Mice Triggers a Supershedder State, Spore-Mediated Transmission, and Severe Disease in Immunocompromised Hosts , 2009, Infection and Immunity.

[53]  N. Fairweather,et al.  The SpoIIQ‐SpoIIIAH complex of C lostridium difficile controls forespore engulfment and late stages of gene expression and spore morphogenesis , 2016, Molecular microbiology.

[54]  D. Gerding,et al.  Systemic and mucosal antibody responses to toxin A in patients infected with Clostridium difficile. , 1992, The Journal of infectious diseases.

[55]  Cyclic-di-GMP signaling in the Gram-positive pathogen Clostridium difficile , 2015, Current Genetics.

[56]  B. Dupuy,et al.  Secretion of Clostridium difficile Toxins A and B Requires the Holin-like Protein TcdE , 2012, PLoS pathogens.

[57]  N. Fairweather,et al.  The spore‐associated protein BclA1 affects the susceptibility of animals to colonization and infection by Clostridium difficile , 2014, Molecular microbiology.

[58]  J. Rask-Madsen,et al.  BACTERIOTHERAPY FOR CHRONIC RELAPSING CLOSTRIDIUM DIFFICILE DIARRHOEA IN SIX PATIENTS , 1989, The Lancet.

[59]  E. Pamer,et al.  Innate Immune Defenses Mediated by Two ILC Subsets Are Critical for Protection against Acute Clostridium difficile Infection. , 2015, Cell host & microbe.

[60]  D. Lafontaine,et al.  Cyclic Di-GMP Riboswitch-Regulated Type IV Pili Contribute to Aggregation of Clostridium difficile , 2014, Journal of bacteriology.

[61]  A. Shen,et al.  Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. , 2016, Biochimie.

[62]  A. Sonenshein,et al.  Chenodeoxycholate Is an Inhibitor of Clostridium difficile Spore Germination , 2008, Journal of bacteriology.

[63]  D. Paredes-Sabja,et al.  Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. , 2014, Trends in microbiology.

[64]  G. Núñez,et al.  Protective Role of Commensals against Clostridium difficile Infection via an IL-1β–Mediated Positive-Feedback Loop , 2012, The Journal of Immunology.

[65]  A. Sonenshein,et al.  Inhibiting the Initiation of Clostridium difficile Spore Germination using Analogs of Chenodeoxycholic Acid, a Bile Acid , 2010, Journal of bacteriology.

[66]  P. Mastrantonio,et al.  Molecular Analysis of the Pathogenicity Locus and Polymorphism in the Putative Negative Regulator of Toxin Production (TcdC) among Clostridium difficile Clinical Isolates , 2002, Journal of Clinical Microbiology.

[67]  Mihnea R. Mangalea,et al.  The Second Messenger Cyclic Di-GMP Regulates Clostridium difficile Toxin Production by Controlling Expression of sigD , 2013, Journal of bacteriology.

[68]  Yeon Joo Lee,et al.  Early Clostridium difficile Infection during Allogeneic Hematopoietic Stem Cell Transplantation , 2014, PloS one.

[69]  Lin Li,et al.  Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome , 2014, Nature.

[70]  E. Glaser The randomized clinical trial. , 1972, The New England journal of medicine.

[71]  A. Hausladen,et al.  Host S-nitrosylation inhibits clostridial small molecule–activated glucosylating toxins , 2011, Nature Medicine.

[72]  Julian I. Rood,et al.  Toxin B is essential for virulence of Clostridium difficile , 2009, Nature.

[73]  R. Gerhard,et al.  Reactive Oxygen Species as Additional Determinants for Cytotoxicity of Clostridium difficile Toxins A and B , 2016, Toxins.

[74]  I. Martin-Verstraete,et al.  The Key Sigma Factor of Transition Phase, SigH, Controls Sporulation, Metabolism, and Virulence Factor Expression in Clostridium difficile , 2011, Journal of bacteriology.

[75]  N. Minton,et al.  University of Birmingham Importance of Toxin A, Toxin B, and CDT in virulence of an epidemic Clostridium difficile strain , 2013 .

[76]  G. Núñez,et al.  Nucleotide-Binding Oligomerization Domain 1 Mediates Recognition of Clostridium difficile and Induces Neutrophil Recruitment and Protection against the Pathogen , 2011, The Journal of Immunology.

[77]  R. Govind,et al.  Observations on the Role of TcdE Isoforms in Clostridium difficile Toxin Secretion , 2015, Journal of bacteriology.

[78]  B. Weimer,et al.  Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens , 2013, Nature.

[79]  R. D. de Souza,et al.  Colonic Health: Fermentation and Short Chain Fatty Acids , 2006, Journal of clinical gastroenterology.

[80]  V. Young,et al.  Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine , 2016, mSphere.

[81]  G. Dougan,et al.  Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism , 2014, BMC Genomics.

[82]  E. Zoetendal,et al.  Duodenal infusion of donor feces for recurrent Clostridium difficile. , 2013, The New England journal of medicine.

[83]  C. Hill,et al.  Bacterial bile salt hydrolase in host metabolism: Potential for influencing gastrointestinal microbe-host crosstalk , 2014, Gut microbes.

[84]  G. Núñez,et al.  Interleukin-22 regulates the complement system to promote resistance against pathobionts after pathogen-induced intestinal damage. , 2014, Immunity.

[85]  D. Gerding,et al.  Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. , 2013, JAMA internal medicine.

[86]  Vincent B. Young,et al.  Suppression of Clostridium difficile in the Gastrointestinal Tracts of Germfree Mice Inoculated with a Murine Isolate from the Family Lachnospiraceae , 2012, Infection and Immunity.

[87]  J. James,et al.  Clostridium difficile 027/BI/NAP1 Encodes a Hypertoxic and Antigenically Variable Form of TcdB , 2013, PLoS pathogens.

[88]  W. Petri,et al.  Role of interleukin 23 signaling in Clostridium difficile colitis. , 2013, The Journal of infectious diseases.

[89]  D. Lacy,et al.  Structural organization of the functional domains of Clostridium difficile toxins A and B , 2010, Proceedings of the National Academy of Sciences.

[90]  A. Khoruts,et al.  Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. , 2014, American journal of physiology. Gastrointestinal and liver physiology.

[91]  J. Bond,et al.  Global Analysis of the Sporulation Pathway of Clostridium difficile , 2013, PLoS genetics.

[92]  C. Hill,et al.  Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon , 2010, Proceedings of the National Academy of Sciences.

[93]  Yu-Kyoung Oh,et al.  Effects of transcription factor activator protein-1 on interleukin-8 expression and enteritis in response to Clostridium difficile toxin A , 2007, Journal of Molecular Medicine.

[94]  D. Artis,et al.  Innate lymphoid cells in the initiation, regulation and resolution of inflammation , 2015, Nature Medicine.

[95]  B. Girinathan,et al.  Clostridium difficile glutamate dehydrogenase is a secreted enzyme that confers resistance to H2O2. , 2014, Microbiology.

[96]  J. L. Giel,et al.  Metabolism of Bile Salts in Mice Influences Spore Germination in Clostridium difficile , 2010, PloS one.

[97]  M. Luczak,et al.  Variable flagella expression among clonal toxin A-/B+Clostridium difficile strains with highly homogeneous flagellin genes. , 2002, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[98]  Stuart Johnson,et al.  Fidaxomicin: a novel macrocyclic antibiotic approved for treatment of Clostridium difficile infection. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[99]  Taane G. Clark,et al.  Targeted Restoration of the Intestinal Microbiota with a Simple, Defined Bacteriotherapy Resolves Relapsing Clostridium difficile Disease in Mice , 2012, PLoS pathogens.

[100]  E. Kuijper,et al.  C. difficile 630Δerm Spo0A Regulates Sporulation, but Does Not Contribute to Toxin Production, by Direct High-Affinity Binding to Target DNA , 2012, PloS one.

[101]  N. Fairweather,et al.  Transcriptional Analysis of Temporal Gene Expression in Germinating Clostridium difficile 630 Endospores , 2013, PloS one.

[102]  I. Martin-Verstraete,et al.  CcpA‐mediated repression of Clostridium difficile toxin gene expression , 2011, Molecular microbiology.

[103]  C. Pothoulakis,et al.  Clostridium difficile toxin A stimulates macrophage-inflammatory protein-2 production in rat intestinal epithelial cells. , 1998, Journal of immunology.

[104]  K. Wilson,et al.  Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile , 1982, Journal of clinical microbiology.

[105]  J. Weese,et al.  International Clostridium difficile animal strain collection and large diversity of animal associated strains , 2014, BMC Microbiology.

[106]  K. Hardie,et al.  The Role of Flagella in Clostridium difficile Pathogenesis: Comparison between a Non-Epidemic and an Epidemic Strain , 2013, PloS one.

[107]  S. Salminen,et al.  Bacterial translocation, intestinal microflora and morphological changes of intestinal mucosa in experimental models of Clostridium difficile infection. , 1998, Journal of medical microbiology.

[108]  C. Waters,et al.  Cyclic Diguanylate Inversely Regulates Motility and Aggregation in Clostridium difficile , 2012, Journal of bacteriology.

[109]  W. Petri,et al.  Inflammasome Activation Contributes to Interleukin-23 Production in Response to Clostridium difficile , 2015, mBio.

[110]  S. Clare,et al.  Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections , 2015, mBio.

[111]  J. Meek,et al.  Burden of Clostridium difficile infection in the United States. , 2015, The New England journal of medicine.

[112]  A. Shen,et al.  TcdB from hypervirulent Clostridium difficile exhibits increased efficiency of autoprocessing , 2012, Molecular microbiology.

[113]  K. Solomon The host immune response to Clostridium difficile infection , 2013, Therapeutic advances in infectious disease.

[114]  A. Shen,et al.  Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination , 2015, PLoS pathogens.

[115]  D. Rodionov,et al.  Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile , 2012, Nucleic acids research.

[116]  D. Serruto,et al.  Multiple Factors Modulate Biofilm Formation by the Anaerobic Pathogen Clostridium difficile , 2012, Journal of bacteriology.

[117]  H. Stahlberg,et al.  Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence , 2014, Proceedings of the National Academy of Sciences.

[118]  Ritu Shrestha,et al.  Bile Acid Recognition by the Clostridium difficile Germinant Receptor, CspC, Is Important for Establishing Infection , 2013, PLoS pathogens.

[119]  T. Clark,et al.  Use of Purified Clostridium difficile Spores To Facilitate Evaluation of Health Care Disinfection Regimens , 2010, Applied and Environmental Microbiology.

[120]  S. Hoys,et al.  Role of fibronectin-binding protein A in Clostridium difficile intestinal colonization. , 2011, Journal of medical microbiology.

[121]  C. Pothoulakis,et al.  p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. , 2000, The Journal of clinical investigation.

[122]  D. Aronoff,et al.  Variation in germination of Clostridium difficile clinical isolates correlates to disease severity. , 2015, Anaerobe.

[123]  Lars Barquist,et al.  High-Throughput Analysis of Gene Essentiality and Sporulation in Clostridium difficile , 2015, mBio.

[124]  V. Burrus,et al.  Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile , 2015, Journal of bacteriology.

[125]  Nigel P. Minton,et al.  The role of toxin A and toxin B in Clostridium difficile infection , 2010, Nature.

[126]  V. Young,et al.  Interleukin‐23 (IL‐23), independent of IL‐17 and IL‐22, drives neutrophil recruitment and innate inflammation during Clostridium difficile colitis in mice , 2016, Immunology.

[127]  R. Lutter,et al.  Tryptophan Catabolism Restricts IFN-γ–Expressing Neutrophils and Clostridium difficile Immunopathology , 2014, The Journal of Immunology.

[128]  J. Lejeune,et al.  Moist-Heat Resistance, Spore Aging, and Superdormancy in Clostridium difficile , 2011, Applied and Environmental Microbiology.

[129]  Yan Li,et al.  Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. , 2010, Gastroenterology.

[130]  R. Platt,et al.  Epidemiology of community-acquired Clostridium difficile-associated diarrhea. , 1994, The Journal of infectious diseases.

[131]  B. Wren,et al.  Characterisation of Clostridium difficile Biofilm Formation, a Role for Spo0A , 2012, PloS one.

[132]  D. Bobak,et al.  Roles of intracellular calcium and NF-kappa B in the Clostridium difficile toxin A-induced up-regulation and secretion of IL-8 from human monocytes. , 1999, Journal of immunology.

[133]  S. Doublié,et al.  Structural and Functional Analysis of the CspB Protease Required for Clostridium Spore Germination , 2013, PLoS pathogens.

[134]  J. Tanha,et al.  Modulation of Toxin Production by the Flagellar Regulon in Clostridium difficile , 2012, Infection and Immunity.

[135]  A. Henriques,et al.  Structure, assembly, and function of the spore surface layers. , 2007, Annual review of microbiology.

[136]  R. Losick,et al.  Crisscross regulation of cell-type-specific gene expression during development in B. subtilis , 1992, Nature.

[137]  Benjamin P. Westover,et al.  Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont , 2005, Science.

[138]  R. Prankerd,et al.  Effect of freezing on oxytocin ampules. , 2013, The New England journal of medicine.

[139]  Adrianne N. Edwards,et al.  CodY-Dependent Regulation of Sporulation in Clostridium difficile , 2016, Journal of bacteriology.

[140]  A. Shen,et al.  SpoIVA and SipL Are Clostridium difficile Spore Morphogenetic Proteins , 2013, Journal of bacteriology.

[141]  Megan C. Garland,et al.  A small-molecule antivirulence agent for treating Clostridium difficile infection , 2015, Science Translational Medicine.

[142]  A. Sonenshein,et al.  Integration of Metabolism and Virulence by Clostridium difficile CodY , 2010, Journal of bacteriology.

[143]  J. Heap,et al.  SleC Is Essential for Germination of Clostridium difficile Spores in Nutrient-Rich Medium Supplemented with the Bile Salt Taurocholate , 2009, Journal of bacteriology.

[144]  K. Wilson Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination , 1983, Journal of clinical microbiology.

[145]  E. Couture-Tosi,et al.  The Spore Differentiation Pathway in the Enteric Pathogen Clostridium difficile , 2013, PLoS genetics.

[146]  I. Just,et al.  Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene. , 2012, Microbial pathogenesis.

[147]  S. Lehrer Duodenal infusion of feces for recurrent Clostridium difficile. , 2013, The New England journal of medicine.

[148]  H. V. van Leeuwen,et al.  Clostridium difficile TcdC protein binds four-stranded G-quadruplex structures , 2013, Nucleic acids research.

[149]  B. Dupuy,et al.  Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[150]  Michael A. Fischbach,et al.  A biosynthetic pathway for a prominent class of microbiota-derived bile acids , 2015, Nature chemical biology.

[151]  Klaus Aktories,et al.  Auto-catalytic Cleavage of Clostridium difficile Toxins A and B Depends on Cysteine Protease Activity* , 2007, Journal of Biological Chemistry.

[152]  I. C. Hall,et al.  INTESTINAL FLORA IN NEW-BORN INFANTS: WITH A DESCRIPTION OF A NEW PATHOGENIC ANAEROBE, BACILLUS DIFFICILIS , 1935 .

[153]  N. Minton,et al.  Spores of Clostridium difficile Clinical Isolates Display a Diverse Germination Response to Bile Salts , 2012, PloS one.

[154]  A. E. Ritchie,et al.  Clostridium scindens sp. nov., a Human Intestinal Bacterium with Desmolytic Activity on Corticoids , 1985 .

[155]  M. Gelfand,et al.  Genome-Wide Analysis of Cell Type-Specific Gene Transcription during Spore Formation in Clostridium difficile , 2013, PLoS genetics.

[156]  R. Lewis,et al.  Characterization of the Sporulation Initiation Pathway of Clostridium difficile and Its Role in Toxin Production , 2009, Journal of bacteriology.

[157]  B. Wren,et al.  Hypervirulent Clostridium difficile PCR-Ribotypes Exhibit Resistance to Widely Used Disinfectants , 2011, PloS one.

[158]  D. Paredes-Sabja,et al.  Characterization of the collagen-like exosporium protein, BclA1, of Clostridium difficile spores. , 2014, Anaerobe.

[159]  M. Unnikrishnan,et al.  Biofilm formation by Clostridium difficile , 2013, Gut microbes.

[160]  Bo Li,et al.  Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection , 2014, Nature Communications.

[161]  V. Young,et al.  Role of GM-CSF in the inflammatory cytokine network that regulates neutrophil influx into the colonic mucosa during Clostridium difficile infection in mice , 2014, Gut microbes.

[162]  A. Sonenshein,et al.  Repression of Clostridium difficile toxin gene expression by CodY , 2007, Molecular microbiology.

[163]  I. Bergin,et al.  Interleukin‐22 and CD160 play additive roles in the host mucosal response to Clostridium difficile infection in mice , 2015, Immunology.

[164]  Joseph A. Sorg,et al.  Muricholic Acids Inhibit Clostridium difficile Spore Germination and Growth , 2013, PloS one.

[165]  Elena Deych,et al.  Markers of intestinal inflammation, not bacterial burden, correlate with clinical outcomes in Clostridium difficile infection. , 2013, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[166]  J. Praestgaard,et al.  Efficacy of LFF571 in a Hamster Model of Clostridium difficile Infection , 2012, Antimicrobial Agents and Chemotherapy.

[167]  D. Paredes-Sabja,et al.  The Clostridium difficile Exosporium Cysteine (CdeC)-Rich Protein Is Required for Exosporium Morphogenesis and Coat Assembly , 2013, Journal of Bacteriology.

[168]  Jeffrey D Goldsmith,et al.  A mouse model of Clostridium difficile-associated disease. , 2008, Gastroenterology.

[169]  A. Shen,et al.  Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy , 2015, Journal of bacteriology.

[170]  D. Gerding,et al.  Protection from Clostridium difficile Infection in CD4 T Cell- and Polymeric Immunoglobulin Receptor-Deficient Mice , 2013, Infection and Immunity.

[171]  M. Awad,et al.  Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen , 2014, Gut microbes.

[172]  Michael Y. Galperin,et al.  A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. , 2013, Environmental microbiology.

[173]  A. Manges,et al.  Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. , 2011, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[174]  D. Gerding,et al.  Clostridium difficile binary toxin CDT , 2013, Gut microbes.