A Novel Kernel Correlation Model with the Correspondence Estimation

We present a novel multiple-linked iterative closest point method to estimate correspondences and the rigid/non-rigid transformations between point-sets or shapes. The estimation task is carried out by maximizing a symmetric similarity function, which is the product of the square roots of correspondences and a kernel correlation. The local mean square error analysis and robustness analysis are provided to show our method’s superior performance to the kernel correlation method.

[1]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[2]  Baba C. Vemuri,et al.  A robust algorithm for point set registration using mixture of Gaussians , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[3]  H. Chui,et al.  A feature registration framework using mixture models , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[4]  Takeo Kanade,et al.  A Cooperative Algorithm for Stereo Matching and Occlusion Detection , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[6]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[7]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[8]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[9]  David W. Lewis,et al.  Matrix theory , 1991 .

[10]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[12]  Michael I. Miller,et al.  Landmark matching via large deformation diffeomorphisms , 2000, IEEE Trans. Image Process..

[13]  Anand Rangarajan,et al.  Simultaneous Nonrigid Registration of Multiple Point Sets and Atlas Construction , 2006, ECCV.

[14]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[15]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  D'arcy W. Thompson On growth and form i , 1943 .

[17]  Edwin R. Hancock,et al.  A unified framework for alignment and correspondence , 2003, Comput. Vis. Image Underst..

[18]  Philip A. Knight,et al.  The Sinkhorn-Knopp Algorithm: Convergence and Applications , 2008, SIAM J. Matrix Anal. Appl..

[19]  Takeo Kanade,et al.  A Correlation-Based Approach to Robust Point Set Registration , 2004, ECCV.

[20]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[21]  William M. Wells,et al.  Statistical Approaches to Feature-Based Object Recognition , 2004, International Journal of Computer Vision.

[22]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[23]  Sethu Vijayakumar,et al.  A Probabilistic Approach to Robust Shape Matching , 2006, 2006 International Conference on Image Processing.

[24]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[25]  L. Younes,et al.  Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching , 2004, CVPR 2004.

[26]  L. Evans,et al.  Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .

[27]  Ishwar K. Sethi,et al.  Finding Trajectories of Feature Points in a Monocular Image Sequence , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[29]  Yunmei Chen,et al.  Kullback Leibler Divergence Based Curve Matching Method , 2007, SSVM.

[30]  Anand Rangarajan,et al.  A new algorithm for non-rigid point matching , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[31]  Laurent Younes,et al.  Computable Elastic Distances Between Shapes , 1998, SIAM J. Appl. Math..

[32]  Philip N. Klein,et al.  On Aligning Curves , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[34]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[35]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[36]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[37]  Zhuowen Tu,et al.  Shape matching and registration by data-driven EM , 2008, Comput. Vis. Image Underst..

[38]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[40]  Xavier Pennec,et al.  Multi-scale EM-ICP: A Fast and Robust Approach for Surface Registration , 2002, ECCV.