New methods for testing linear separability

This paper introduces latest advances in the subject of linear separability. New methods for testing linear separability are introduced. This is a very important area of work which can help simplify the topology of a neural network by using a single layer perceptron when the problem at hand is linearly separable. The research presented in this paper has allowed researchers to enhance the performance of the RDP neural network. It appears in one of the leading journals of Neural Networks.

[1]  E. Helly Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .

[2]  H. W. Kuhn Solvability and Consistency for Linear Equations and Inequalities , 1956 .

[3]  J. Stoer,et al.  Convexity and Optimization in Finite Dimensions I , 1970 .

[4]  Thomas Kailath,et al.  Classification of linearly nonseparable patterns by linear threshold elements , 1995, IEEE Trans. Neural Networks.

[5]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[6]  Nirmal K. Bose,et al.  Neural network design using Voronoi diagrams , 1993, IEEE Trans. Neural Networks.

[7]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[10]  Sung-Kwon Park,et al.  The geometrical learning of binary neural networks , 1995, IEEE Trans. Neural Networks.

[11]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[12]  Franco P. Preparata,et al.  The Densest Hemisphere Problem , 1978, Theor. Comput. Sci..

[13]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[14]  Günter Ewald,et al.  Geometry: an introduction , 1971 .

[15]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[16]  Françoise Fogelman-Soulié,et al.  Multi-Modular Neural Network Architectures: Applications in Optical Character and Human Face Recognition , 1993, Int. J. Pattern Recognit. Artif. Intell..

[17]  Stephen I. Gallant,et al.  Perceptron-based learning algorithms , 1990, IEEE Trans. Neural Networks.

[18]  Richard De Santis A generalization of Helly’s theorem , 1957 .

[19]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.