New methods for testing linear separability
暂无分享,去创建一个
[1] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .
[2] H. W. Kuhn. Solvability and Consistency for Linear Equations and Inequalities , 1956 .
[3] J. Stoer,et al. Convexity and Optimization in Finite Dimensions I , 1970 .
[4] Thomas Kailath,et al. Classification of linearly nonseparable patterns by linear threshold elements , 1995, IEEE Trans. Neural Networks.
[5] J. Ross Quinlan,et al. Induction of Decision Trees , 1986, Machine Learning.
[6] Nirmal K. Bose,et al. Neural network design using Voronoi diagrams , 1993, IEEE Trans. Neural Networks.
[7] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[8] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[9] A. A. Mullin,et al. Principles of neurodynamics , 1962 .
[10] Sung-Kwon Park,et al. The geometrical learning of binary neural networks , 1995, IEEE Trans. Neural Networks.
[11] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[12] Franco P. Preparata,et al. The Densest Hemisphere Problem , 1978, Theor. Comput. Sci..
[13] Richard P. Lippmann,et al. An introduction to computing with neural nets , 1987 .
[14] Günter Ewald,et al. Geometry: an introduction , 1971 .
[15] Hanif D. Sherali,et al. Linear Programming and Network Flows , 1977 .
[16] Françoise Fogelman-Soulié,et al. Multi-Modular Neural Network Architectures: Applications in Optical Character and Human Face Recognition , 1993, Int. J. Pattern Recognit. Artif. Intell..
[17] Stephen I. Gallant,et al. Perceptron-based learning algorithms , 1990, IEEE Trans. Neural Networks.
[18] Richard De Santis. A generalization of Helly’s theorem , 1957 .
[19] W. Pitts,et al. A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.