Weighted bounded solutions for a class of nonlinear fractional equations

Abstract Let T be a bounded linear operator defined on a Banach space X. We investigate the existence of solutions for a class of nonlinear fractional equation in the form (∗)Δαu(n)=Tu(n)+f(n,u(n)),n∈N0,0<α≤1;u(0)=x, $$ \begin{equation*} (*) \left\{ % \begin{array}{rll} \Delta^{\alpha} u(n) &= Tu(n) +f(n, u(n)), \quad n \in \mathbb{N}_0, \quad 0<\alpha \leq 1;\\ u(0) &= x, \\ \end{array} % \right. \end{equation*}$$ on the vector-valued weighted sequence space lf∞(N;X)=x:N→X/supn∈N∥x(n)∥nn!<∞. $$l_f^\infty(\mathbb{N};X)=\left\{x:\mathbb{N}\to X \,\, /\,\,\sup_{n\in\mathbb{N}}\frac{\|x(n)\|}{nn!}<\infty \right\}. $$ Our analysis relies on the fixed point theory and operator-theoretical methods.

[1]  F. Atici,et al.  Modeling with fractional difference equations , 2010 .

[2]  Jiang Wei,et al.  Solving Fractional Difference Equations Using the Laplace Transform Method , 2014 .

[3]  R. Agarwal,et al.  Regularity of Difference Equations on Banach Spaces , 2014 .

[4]  I. Sloan,et al.  Collocation methods for the second kind integral equations with non-compact operators , 1989 .

[5]  Thabet Abdeljawad,et al.  On Riemann and Caputo fractional differences , 2011, Comput. Math. Appl..

[6]  P. Eloe,et al.  A transform method in discrete fractional calculus , 2007 .

[7]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[8]  Ivan G. Graham,et al.  Product integration-collocation methods for noncompact integral operator equations , 1988 .

[9]  Christopher S. Goodrich,et al.  Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions , 2011, Comput. Math. Appl..

[10]  Christopher S. Goodrich,et al.  On a discrete fractional three-point boundary value problem , 2012 .

[11]  P. Eloe,et al.  Initial value problems in discrete fractional calculus , 2008 .

[12]  C. Goodrich On a first-order semipositone discrete fractional boundary value problem , 2012 .

[13]  Manuel Duarte Ortigueira,et al.  Discrete-time differential systems , 2015, Signal Process..

[14]  Thabet Abdeljawad,et al.  On the Definitions of Nabla Fractional Operators , 2012 .

[15]  S. Elaydi Stability and asymptoticity of Volterra difference equations: A progress report , 2009 .

[16]  C. Lizama lp ‐maximal regularity for fractional difference equations on UMD spaces , 2015 .

[17]  Tomáš Kisela,et al.  Stability regions for linear fractional differential systems and their discretizations , 2013, Appl. Math. Comput..

[18]  Tomáš Kisela,et al.  Stability and asymptotic properties of a linear fractional difference equation , 2012 .

[19]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[20]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[21]  Carlos Lizama,et al.  The Poisson distribution, abstract fractional difference equations, and stability , 2017 .

[22]  J. Mallet-Paret Traveling Waves in Spatially Discrete Dynamical Systems of Diffusive Type , 2003 .

[23]  Shurong Sun,et al.  The existence and uniqueness of solutions to boundary value problems of fractional difference equations , 2012, Mathematical Sciences.

[24]  Vidar Thomée,et al.  Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term , 1996, Math. Comput..

[25]  K. Tas,et al.  A new transform method in nabla discrete fractional calculus , 2012 .

[26]  Paul W. Eloe,et al.  DISCRETE FRACTIONAL CALCULUS WITH THE NABLA OPERATOR , 2009 .

[27]  V. B. Kolmanovskii,et al.  A survey: stability and boundedness of Volterra difference equations , 2003 .

[28]  J. M. Sanz-Serna,et al.  A numerical method for a partial integro-differential equation , 1988 .

[29]  G. Sell,et al.  Differential Systems with Feedback: Time Discretizations and Lyapunov Functions , 2003 .