Terahertz photon-assisted tunneling in carbon nanotube quantum dots

The authors have studied the transport properties of carbon nanotube quantum dots under terahertz (THz) wave irradiation. The experimental data have shown that the satellite currents are generated with the THz irradiation, and that the peak position of the satellite currents varies linearly with the THz photon energy. These results provide experimental evidence for photon-assisted tunneling in the THz region. The present observation provides the interesting possibility of developing a highly sensitive and frequency-tunable THz detector capable of high-temperature operation.

[1]  Pablo Jarillo-Herrero,et al.  Quantum supercurrent transistors in carbon nanotubes , 2006, Nature.

[2]  Y. Aoyagi,et al.  Quantum response of carbon nanotube quantum dots to terahertz wave irradiation , 2007 .

[3]  N. C. van der Vaart,et al.  Photon Sidebands of the Ground State and First Excited State of a Quantum Dot , 1997 .

[4]  T. M. Klapwijk,et al.  Niobium titanium nitride-based superconductor-insulator-superconductor mixers for low-noise terahertz receivers , 2005 .

[5]  L. Vandersypen,et al.  Real-time detection of single-electron tunneling using a quantum point contact , 2004, cond-mat/0407121.

[6]  Y. Aoyagi,et al.  Coulomb peak shifts under terahertz-wave irradiation in carbon nanotube single-electron transistors , 2007 .

[7]  Raman modes of index-identified freestanding single-walled carbon nanotubes. , 2005, Physical review letters.

[8]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[9]  Hiromichi Kataura,et al.  Optical Properties and Raman Spectroscopy of Carbon Nanotubes , 2001 .

[10]  Koji Ishibashi,et al.  Carbon nanotube quantum dots fabricated on a GaAs∕AlGaAs two-dimensional electron gas substrate , 2005 .

[11]  Safumi Suzuki,et al.  One THz harmonic oscillation of resonant tunneling diodes , 2005 .

[12]  P. McEuen,et al.  Observation of photon-assisted tunneling through a quantum dot. , 1994, Physical review letters.

[13]  Four-electron shell structures and an interacting two-electron system in carbon-nanotube quantum dots. , 2004, Physical review letters.

[14]  O. Astafiev,et al.  Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.

[15]  J. Kong,et al.  Orbital Kondo effect in carbon nanotubes , 2005, Nature.

[16]  J. P. Gordon,et al.  Multiphoton Process Observed in the Interaction of Microwave Fields with the Tunneling between Superconductor Films , 1963 .

[17]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[18]  Qian Wang,et al.  Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems , 2002 .

[19]  J. C. Tsang,et al.  Electrically Induced Optical Emission from a Carbon Nanotube FET , 2003, Science.

[20]  S. Tarucha,et al.  Microwave spectroscopy of a quantum-dot molecule , 1998, Nature.

[21]  Jaw-Shen Tsai,et al.  Spectroscopy of Energy-Level Splitting between Two Macroscopic Quantum States of Charge Coherently Superposed by Josephson Coupling , 1997 .

[22]  Marc J. Feldman,et al.  Quantum detection at millimeter wavelengths , 1985 .

[23]  Arthur C. Gossard,et al.  Photon‐assisted tunneling in GaAs/AlGaAs superlattices up to room temperature , 1996 .

[24]  Satoru Suzuki,et al.  Low-Acceleration-Voltage Electron Irradiation Damage in Single-Walled Carbon Nanotubes , 2004 .

[25]  H. Cheong,et al.  Coherent manipulation of electronic States in a double quantum dot. , 2003, Physical review letters.

[26]  D. Cobden,et al.  Kondo physics in carbon nanotubes , 2000, Nature.

[27]  M. Dresselhaus Carbon nanotubes , 1995 .

[28]  Shell filling in closed single-wall carbon nanotube quantum dots. , 2001, Physical review letters.

[29]  B. Leone,et al.  Electron heating by photon-assisted tunneling in niobium terahertz mixers with integrated niobium titanium nitride striplines , 2001 .