On Chvátal's conjecture and a conjecture on families of signed sets
暂无分享,去创建一个
[1] Peter Frankl,et al. Erdös–Ko–Rado Theorem—22 Years Later , 1983 .
[2] C. Berge,et al. Nombres de coloration de l’hypergraphe h-parti complet , 1975 .
[3] Cheng Yeaw Ku,et al. Erdos-Ko-Rado theorems for permutations and set partitions , 2008, J. Comb. Theory, Ser. A.
[4] Claude Berge. Nombres de coloration de l'hypergrapheh-parti complet , 1975 .
[5] Peter Borg. Intersecting Systems of Signed Sets , 2007, Electron. J. Comb..
[6] Fred C. Holroyd,et al. Graphs with the Erdös-Ko-Rado property , 2003, Discret. Math..
[7] Vašek Chvátal,et al. Intersecting families of edges in hypergraphs having the hereditary property , 1974 .
[8] Jeffrey C. Lagarias,et al. Probabilities for intersecting systems and random subsets of finite sets , 1986 .
[9] Hans-Dietrich O. F. Gronau. More on the Erdös-Ko-Rado Theorem for Integer Sequences , 1983, J. Comb. Theory, Ser. A.
[10] Peter Borg. On t-intersecting families of signed sets and permutations , 2009, Discret. Math..
[11] J. C. Meyer. Quelques problemes concernant les cliques des hypergraphes h-complets et q-parti h-complets , 1974 .
[12] Peter Borg. Extremal t-intersecting sub-families of hereditary families , 2009 .
[13] M. L Livingston. An Ordered Version of the Erdös-Ko-Rado Theorem , 1979, J. Comb. Theory, Ser. A.
[14] Hunter S. Snevily. A New Result on Chvátal's Conjecture , 1992, J. Comb. Theory, Ser. A.
[15] Hunter S. Snevily,et al. A new result on Chva´tal's conjecture , 1992 .
[16] Péter L. Erdös,et al. A Group-Theoretic Setting for Some Intersecting Sperner Families , 1992, Comb. Probab. Comput..
[17] B. Bollobás,et al. An Erdős-Ko-Rado Theorem For Signed Sets , 1997 .
[18] Aeryung Moon. An Analogue of the Erdös-Ko-Rado Theorem for the Hamming Schemes H(n, q) , 1982, J. Comb. Theory, Ser. A.
[19] Rudolf Ahlswede,et al. Contributions to the geometry of hamming spaces , 1977, Discret. Math..
[20] Konrad Engel. An Erdös-Ko-Rado theorem for the subcubes of a cube , 1984, Comb..
[21] Ping Wang,et al. Some results about the Chvátal conjecture , 1978, Discret. Math..