Performance improvement of face recognition algorithms using occluded-region detection

Facial occlusions such as eyeglasses, hairs and beards decrease the performance of face recognition algorithms. To improve the performance of face recognition algorithms, this paper proposes a novel framework of face recognition combined with the occluded-region detection method. In this paper, we detect occluded regions using Fast-Weighted Principal Component Analysis (FW-PCA) and use the occluded regions as weights for matching face images. To demonstrate the effectiveness of the proposed framework, we use two face recognition algorithms: Local Binary Patterns (LBP) and Phase-Only Correlation (POC). Experimental evaluation using public face image databases indicates performance improvement of the face recognition algorithms for face images with natural and artificial occlusions.

[1]  Abdenour Hadid,et al.  Improving the recognition of faces occluded by facial accessories , 2011, Face and Gesture 2011.

[2]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Zhi-Hua Zhou,et al.  Face Recognition Under Occlusions and Variant Expressions With Partial Similarity , 2009, IEEE Transactions on Information Forensics and Security.

[4]  Koichi Ito,et al.  Face recognition using phase-based correspondence matching , 2011, Face and Gesture 2011.

[5]  T. Higuchi,et al.  A Sub-Pixel Correspondence Search Technique for Computer Vision Applications , 2004 .

[6]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Dahua Lin,et al.  Quality-Driven Face Occlusion Detection and Recovery , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Koichi Ito,et al.  Restoring occluded regions using FW-PCA for face recognition , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[9]  Horst Bischof,et al.  Active Appearance Model Fitting under Occlusion using Fast-robust PCA , 2009, VISAPP.

[10]  Hiroshi Nakajima,et al.  An Effective Approach for Iris Recognition Using Phase-Based Image Matching , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Anil K. Jain,et al.  Handbook of Face Recognition, 2nd Edition , 2011 .

[12]  Jenn-Jier James Lien,et al.  Facial Occlusion Reconstruction: Recovering Both the Global Structure and the Local Detailed Texture Components , 2007, PSIVT.

[13]  Aleix M. Martínez,et al.  Recognizing Imprecisely Localized, Partially Occluded, and Expression Variant Faces from a Single Sample per Class , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[15]  Sang Uk Lee,et al.  Occlusion invariant face recognition using selective local non-negative matrix factorization basis images , 2008, Image Vis. Comput..

[16]  Horst Bischof,et al.  Occlusion detection for ICAO compliant facial photographs , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[17]  C. D. Kuglin,et al.  The phase correlation image alignment method , 1975 .

[18]  Horst Bischof,et al.  Robust Recognition Using Eigenimages , 2000, Comput. Vis. Image Underst..

[19]  Deva Ramanan,et al.  Face detection, pose estimation, and landmark localization in the wild , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  A. Martínez,et al.  The AR face databasae , 1998 .

[22]  Matti Pietikäinen,et al.  Computer Vision Using Local Binary Patterns , 2011, Computational Imaging and Vision.