Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations

[1]  Jianxian Qiu,et al.  Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton-Jacobi equations , 2017, Adv. Comput. Math..

[2]  Feng Zheng,et al.  Directly solving the Hamilton-Jacobi equations by Hermite WENO Schemes , 2016, J. Comput. Phys..

[3]  Jun Zhu,et al.  Finite volume Hermite WENO schemes for solving the Hamilton-Jacobi equations II: Unstructured meshes , 2014, Comput. Math. Appl..

[4]  Jianxian Qiu,et al.  Finite Volume Hermite WENO Schemes for Solving the Hamilton-Jacobi Equation , 2014 .

[5]  Jun Zhu,et al.  Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes , 2013, J. Comput. Phys..

[6]  Yingda Cheng,et al.  A new discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations , 2013, J. Comput. Phys..

[7]  Stanley Osher,et al.  A local discontinuous Galerkin method for directly solving Hamilton-Jacobi equations , 2011, J. Comput. Phys..

[8]  Chi-Wang Shu,et al.  A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations , 2007, Journal of Computational Physics.

[9]  J. Qiu WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations , 2007 .

[10]  Chi-Wang Shu,et al.  Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations , 2005, Appl. Math. Lett..

[11]  Chi-Wang Shu,et al.  Hermite WENO schemes for Hamilton-Jacobi equations , 2005 .

[12]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[13]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[14]  R. Abgrall Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .

[15]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[16]  S. Osher,et al.  High Order Two Dimensional Nonoscillatory Methods for Solving Hamilton-Jacobi Scalar Equations , 1996 .

[17]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[18]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[19]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[20]  R. Newcomb VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS , 2010 .

[21]  J. Qiu HERMITE WENO SCHEMES WITH LAX-WENDROFF TYPE TIME DISCRETIZATIONS FOR HAMILTON-JACOBI EQUATIONS , 2007 .

[22]  Chi-Wang Shu HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS , 2007 .

[23]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[24]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case , 2004 .

[25]  Chi-Wang Shu,et al.  High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..

[26]  B. A. Bernstein Postulates for abelian groups and fields in terms of non-associative operations , 1938 .