Suscetibilidade de adultos de Bemisia tabaci biótipo B a inseticidas

The association between some plant pathogenic viruses and their vectors may or may not alter the action of chemical control. This study aimed at evaluating the susceptibility of viruliferous (transmitter of the begomovirus Tomato severe rugose virus, ToSRV) and aviruliferous (non-transmitter of ToSRV) Bemisia tabaci biotype B to the main insecticides registered to its control in tomato crops. Two sets of experiments were carried out with tomato plants and foliar discs of jack beans. The treatments were schemed in a factorial design of 7 (six insecticides + control) and 5 (four insecticides + control) x 2 {viruliferous (V) or aviruliferous (AV) whiteflies (WF)} and arranged in completely randomized blocks design with six and 25 replications, respectively, for tomato and jack beans. The following insecticides and concentrations were evaluated: a) tomato: acephate (100 g), clothianidin (20 g), pymetrozine (40 g), pyriproxyfen (75 mL) and thiametoxan (20 g of a.i./100 L), and diafenthiuron (800 g of a.i./300 L of solution); b) jack beans: acephate (100 g), thiametoxan (20 g), pymetrozine (40 g of a.i./100 L) and diafenthiuron (800 g of a.i./300 L). The insecticide susceptibility of whiteflies was not altered by their viruliferous condition (V or AV). The insecticides diafenthiuron (87.68%±4.96) and thiametoxam (43.94%±9.43) caused the highest mortality of whiteflies in tomatoes. In jack beans, diafenthiuron (92.01%±2.68) and thiametoxam (86,39%±2,74) caused similar mortality. Among the tested insecticides, diafenthiuron was the only one causing significant mortality of B. tabaci biotype B.

[1]  Sophia Decker,et al.  Design And Analysis Of Ecological Experiments , 2016 .

[2]  R. Muhamad,et al.  Biotype and insecticide resistance status of Bemisia tabaci populations from Peninsular Malaysia , 2015 .

[3]  A. Fereres,et al.  Tomato Yellow Leaf Curl Virus Benefits Population Growth of the Q Biotype of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) , 2014, Neotropical Entomology.

[4]  Antônio Macedo Dias Manejo de mosca-branca com e sem begomovírus em plantas de tomate tratadas com inseticidas , 2013 .

[5]  Ralf Nauen,et al.  Pymetrozine is hydroxylated by CYP6CM1, a cytochrome P450 conferring neonicotinoid resistance in Bemisia tabaci. , 2013, Pest management science.

[6]  M. Ghanim,et al.  Back to Basics: Are Begomoviruses Whitefly Pathogens? , 2012 .

[7]  B. Fenton,et al.  Differences in the life parameters related to population increase of some major genotypes of Scottish Myzus persicae, the main vector of Potato leafroll virus. , 2012 .

[8]  A. Inoue-Nagata,et al.  Characterization and Experimental Host Range of a Brazilian Tomato Isolate of Tomato severe rugose virus , 2011 .

[9]  J. Blande,et al.  Cross-resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). , 2010, Pest management science.

[10]  H. Vaquera-Huerta,et al.  [Fitness of Bemisia tabaci (Gennadius) B Biotype (Hemiptera: Aleyrodidae) populations with different levels of susceptibility to the thiametoxam insecticide]. , 2010, Neotropical entomology.

[11]  Y. Buckley,et al.  Refined Global Analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) Mitochondrial Cytochrome Oxidase 1 to Identify Species Level Genetic Boundaries , 2010 .

[12]  R. Nichols,et al.  Pyriproxyfen Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) Biotype B: Metabolic Mechanism , 2010, Journal of economic entomology.

[13]  Zhou Xu-xia,et al.  Differential indirect effects of two plant viruses on an invasive and an indigenous whitefly vector: implications for competitive displacement , 2009 .

[14]  P. M. Dourado,et al.  [Monitoring the susceptibility to insecticides in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations from Brazil]. , 2009, Neotropical entomology.

[15]  L. Silva,et al.  CROP PROTECTION Monitoramento da Suscetibilidade a Inseticidas em Populações de Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) no Brasil , 2009 .

[16]  R. Nauen,et al.  Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. , 2008, Insect biochemistry and molecular biology.

[17]  J. Polston,et al.  Pymetrozine interferes with transmission ofTomato yellow leaf curl virus by the whiteflyBemisia tabaci , 2003, Phytoparasitica.

[18]  M. Picanço,et al.  Toxicity of insecticides to the sweetpotato whitefly (Hemiptera: Aleyrodidae) and its natural enemies. , 2007, Pest management science.

[19]  Xiao Yang,et al.  Vector-Virus Mutualism Accelerates Population Increase of an Invasive Whitefly , 2007, PloS one.

[20]  Gisele Rodrigues Moreira,et al.  Genetic diversity among tomato accessions infested by different tomato leaf miner populations , 2005 .

[21]  L. Boiteux,et al.  Efeito da infecção precoce por Begomovirus com genoma bipartido em características de frutos de tomate industrial , 2005 .

[22]  D. Frohlich,et al.  Bemisia argentifolii is a race of B. tabaci (Hemiptera: Aleyrodidae): the molecular genetic differentiation of B. tabaci populations around the world , 2005, Bulletin of Entomological Research.

[23]  Tatsuya Nagata,et al.  A simple method for cloning the complete begomovirus genome using the bacteriophage phi29 DNA polymerase. , 2004, Journal of virological methods.

[24]  R. O. Resende,et al.  Estudo da interação de um begomovírus isolado de tomateiro com a mosca branca , 2003 .

[25]  C. Mckenzie,et al.  EFFECT OF TOMATO MOTTLE VIRUS (ToMoV) ON BEMISIA TABACI BIOTYPE B (HOMOPTERA: ALEYRODIDAE) OVIPOSITION AND ADULT SURVIVORSHIP ON HEALTHY TOMATO , 2002 .

[26]  J. Brown,et al.  A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers , 1999, Molecular ecology.

[27]  H. Czosnek,et al.  Long-term association of tomato yellow leaf curl virus with its whitefly vector Bemisia tabaci: effect on the insect transmission capacity, longevity and fecundity. , 1997, The Journal of general virology.

[28]  S. Meola,et al.  Physiological effects of the juvenoid pyriproxyfen on adults, eggs, and larvae of the cat flea , 1993 .

[29]  R. Gilbertson,et al.  Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses , 1993 .

[30]  J. Doyle,et al.  A rapid DNA isolation procedure for small amounts of fresh leaf tissue , 1987 .

[31]  W Puntener,et al.  Manual for Field Trials in Plant Protection , 1981 .

[32]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .