Nonparametric Estimation of Item and Respondent Locations from Unfolding-type Items

Unlike their monotone counterparts, nonparametric unfolding response models, which assume the item response function is unimodal, have seen little attention in the psychometric literature. This paper studies the nonparametric behavior of unfolding models by building on the work of Post (1992). The paper provides rigorous justification for a class of nonparametric estimators of respondents’ latent attitudes by proving that the estimators consistently rank order the respondents. The paper also suggests an algorithm for the rank ordering of items along the attitudes scale. Finally, the methods are evaluated using simulated data.

[1]  P. Rosenbaum Comparing item characteristic curves , 1987 .

[2]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[3]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[4]  A. Lazraq,et al.  Mesures de liaison vectorielle et généralisation de l'analyse canonique , 1992 .

[5]  H. Hoijtink Parelia; measurement of letent traits by proximity items. , 1990 .

[6]  David Andrich,et al.  A Probabilistic IRT Model for Unfolding Preference Data , 1989 .

[7]  Brian W. Junker,et al.  Stochastic ordering using the latent trait and the sum score in polytomous IRT models , 1997 .

[8]  J. Berge,et al.  Perceptual Mapping Based on Idiosyncratic Sets of Attributes , 1994 .

[9]  Paul E. Green,et al.  Choice rules and sensitivity analysis in conjoint simulators , 1988 .

[10]  R. Cléroux,et al.  Statistical Inference Concerning Several Redundancy Indices , 2001 .

[11]  Robert A. Peterson,et al.  On the Interpretation of Canonical Analysis , 1972 .

[12]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[13]  William Stout,et al.  A New Item Response Theory Modeling Approach with Applications to Unidimensionality Assessment and Ability Estimation , 1990 .

[14]  Paul E. Green,et al.  A simple procedure for finding a composite of several multidimensional scaling solutions , 1988 .

[15]  PARELLA: Measurement of latent traits by proximity items , 1992 .

[16]  Herbert Hoijtink,et al.  A latent trait model for dichotomous choice data , 1990 .

[17]  Ingwer Borg,et al.  Measuring the Similarity of MDS Configurations. , 1985, Multivariate behavioral research.

[18]  N. D. Verhelst,et al.  A stochastic unfolding model derived from the partial credit model , 1993 .

[19]  Brian W. Junker,et al.  Using Data Augmentation and Markov Chain Monte Carlo for the Estimation of Unfolding Response Models , 2003 .

[20]  William F. Strout A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation , 1990 .

[21]  J. S. Roberts,et al.  A General Item Response Theory Model for Unfolding Unidimensional Polytomous Responses , 2000 .

[22]  David Andrich,et al.  A Hyperbolic Cosine Latent Trait Model For Unfolding Dichotomous Single-Stimulus Responses , 1993 .

[23]  J. Leeuw,et al.  OVERALS: nonlinear canonical correlation with k sets of variables , 1994 .

[24]  M. Hill,et al.  Nonlinear Multivariate Analysis. , 1990 .

[25]  Brian Everitt,et al.  Homogeneity analysis of incomplete data , 1986 .

[26]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .

[27]  J. Ramsay Kernel smoothing approaches to nonparametric item characteristic curve estimation , 1991 .

[28]  Michel Wedel,et al.  A Comparison of Multidimensional Scaling Methods for Perceptual Mapping , 1999 .

[29]  Robert J. Mokken,et al.  A Theory and Procedure of Scale Analysis. , 1973 .

[30]  J. Douglas Joint consistency of nonparametric item characteristic curve and ability estimation , 1997 .

[31]  L. Thurstone Attitudes Can Be Measured , 1928, American Journal of Sociology.

[32]  David Andrich,et al.  The Application of an Unfolding Model of the PIRT Type to the Measurement of Attitude , 1988 .

[33]  E. Maris Psychometric latent response models , 1995 .

[34]  H. Hoijtink,et al.  Testing for DIF in a model with single peaked item characteristic curves: The parella model , 1992 .

[35]  D. Andrich Relationships Between the Thurstone and Rasch Approaches to Item Scaling , 1978 .

[36]  Wendelina Jantina Post Nonparametric unfolding models. A latent structure approach. , 1992 .

[37]  Mark L. Davison,et al.  On a metric, unidimensional unfolding model for attitudinal and developmental data , 1977 .

[38]  K Sijtsma,et al.  A survey of theory and methods of invariant item ordering. , 1996, The British journal of mathematical and statistical psychology.

[39]  G. Masters A rasch model for partial credit scoring , 1982 .

[40]  L. Thurstone A law of comparative judgment. , 1994 .

[41]  B. Junker Conditional association, essential independence and monotone unidimensional Item response models , 1993 .

[42]  B. Junker,et al.  Nonparametric Item Response Theory in Action: An Overview of the Special Issue , 2001 .

[43]  P. Bickel,et al.  DESCRIPTIVE STATISTICS FOR NONPARAMETRIC MODELS IV. SPREAD , 1979 .

[44]  Wayne S. DeSarbo,et al.  Simple and Weighted Unfolding Threshold Models for the Spatial Representation of Binary Choice Data , 1986 .

[45]  Anton K. Formann,et al.  Latent class models for nonmonotone dichotomous items , 1988 .

[46]  Brian W. Junker,et al.  Essential independence and likelihood-based ability estimation for polytomous items , 1991 .

[47]  D. Stewart,et al.  A general canonical correlation index. , 1968, Psychological bulletin.

[48]  Yvonnick Noël,et al.  Recovering unimodal latent patterns of change by unfolding analysis: Application to smoking cessation , 1999 .

[49]  C. Coombs A theory of data. , 1965, Psychology Review.

[50]  T. Gleason On redundancy in canonical analysis. , 1976 .

[51]  Klaas Sijtsma,et al.  Methodology Review: Nonparametric IRT Approaches to the Analysis of Dichotomous Item Scores , 1998 .

[52]  Jan de Leeuw,et al.  Homogeneity analysis withk sets of variables: An alternating least squares method with optimal scaling features , 1988 .