Data Mining and Knowledge Discovery for Process Monitoring and Control

[1]  LiMin Fu,et al.  Rule Generation from Neural Networks , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[2]  Thomas F. Edgar,et al.  Identification of faulty sensors using principal component analysis , 1996 .

[3]  Jie Zhang,et al.  Prediction of polymer quality in batch polymerisation reactors using robust neural networks , 1998 .

[4]  Bhavik R. Bakshi,et al.  Representation of process trends—III. Multiscale extraction of trends from process data , 1994 .

[5]  M. J. R. Healy,et al.  Fitting Equations to Data, 2Nd Ed , 1980 .

[6]  Takushi Nishiya,et al.  Application of the intelligent alarm system for the plant operation , 1997 .

[7]  Andrzej Kraslawski,et al.  Case-based reasoning system for mixing equipment selection , 1995 .

[8]  J. R. Whiteley,et al.  Knowledge-based interpretation of sensor patterns , 1992 .

[9]  Pedro M. Saraiva,et al.  Continuous process improvement through inductive and analogical learning , 1992 .

[10]  J. Buckley,et al.  Fuzzy neural networks: a survey , 1994 .

[11]  P. A. Clark,et al.  A distributed fault diagnosis method based on digraph models : steady-state analysis , 1993 .

[12]  Stephen Grossberg,et al.  The ART of Adaptive Pattern Recognition Self-organizing by a Neu Network , 1988 .

[13]  S. Wold,et al.  Multi‐way principal components‐and PLS‐analysis , 1987 .

[14]  M. Ayoubi Comparison between the dynamic multi-layered perceptron and the generalised Hammerstein model for experimental identification of the loading process in diesel engines , 1997 .

[15]  Chien-Chung Chan Incremental Learning of Production Rules from Examples under Uncertainty: a Rough Set Approach , 1991, Int. J. Softw. Eng. Knowl. Eng..

[16]  Tamás D. Gedeon,et al.  An improved technique in porosity prediction: a neural network approach , 1995, IEEE Trans. Geosci. Remote. Sens..

[17]  Shigeo Abe,et al.  A method for fuzzy rules extraction directly from numerical data and its application to pattern classification , 1995, IEEE Trans. Fuzzy Syst..

[18]  George Stephanopoulos,et al.  Chemical Process Control: An Introduction to Theory and Practice , 1983 .

[19]  C. McGreavy,et al.  Neural nets, fuzzy sets and digraphs in safety and operability studies of refinery reaction processes , 1996 .

[20]  Minitab Statistical Methods for Quality Improvement , 2001 .

[21]  Pedro M. Saraiva,et al.  Inductive and Analogical Learning: Data-Driven Improvement of Process Operations1 , 1995 .

[22]  Ali Cinar,et al.  Statistical process monitoring and disturbance diagnosis in multivariable continuous processes , 1996 .

[23]  H. de Lasa,et al.  Simulation and multiplicity of steady states in fluidized FCCUs , 1992 .

[24]  Jie Zhang,et al.  Fault detection and diagnosis using multivariate statistical techniques : Process operations and control , 1996 .

[25]  Ivan Dvořák,et al.  Singular-value decomposition in attractor reconstruction: pitfalls and precautions , 1992 .

[26]  C. McGreavy,et al.  Qualitative process modelling: a fuzzy signed directed graph method , 1995 .

[27]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[28]  M. Ouassir,et al.  Causal graphs and rule generation: application to fault diagnosis of dynamic processes , 1997 .

[29]  T J McAvoy,et al.  A comparison of neural networks and partial least squares for deconvoluting fluorescence spectra , 1992, Biotechnology and bioengineering.

[30]  W. Shewhart The Economic Control of Quality of Manufactured Product. , 1932 .

[31]  Steffen Leonhardt,et al.  Methods of fault diagnosis , 1997 .

[32]  Peter L. Lee,et al.  An integrated neural network/expert system approach for fault diagnosis , 1993 .

[33]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory, Second Edition , 1988, Springer Series in Information Sciences.

[34]  C. Kiparissides,et al.  Inferential Estimation of Polymer Quality Using Stacked Neural Networks , 1997 .

[35]  Gregory F. Cooper,et al.  A Bayesian Method for the Induction of Probabilistic Networks from Data , 1992 .

[36]  Peter Cheeseman,et al.  Automatic classification of spectra from the Infrared Astronomical Satellite (IRAS) , 1989 .

[37]  J. Ross Quinlan,et al.  Improved Use of Continuous Attributes in C4.5 , 1996, J. Artif. Intell. Res..

[38]  J. Macgregor,et al.  Monitoring batch processes using multiway principal component analysis , 1994 .

[39]  Mark A. Kramer Malfunction diagnosis using quantitative models with non‐boolean reasoning in expert systems , 1987 .

[40]  J. Perkins,et al.  Structural Stability of Chemical Process Plants , 1997 .

[41]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[42]  M. Iri,et al.  An algorithm for diagnosis of system failures in the chemical process , 1979 .

[43]  Michael Biehl,et al.  The dynamics of on-line principal component analysis , 1998 .

[44]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  J. Macgregor,et al.  Development of inferential process models using PLS , 1994 .

[46]  Gregory Piatetsky-Shapiro,et al.  The KDD process for extracting useful knowledge from volumes of data , 1996, CACM.

[47]  X. Z. Wang,et al.  Software Sensor Design Using Bayesian Automatic Classification and Back-Propagation Neural Networks , 1998 .

[48]  J. Wolfe PATTERN CLUSTERING BY MULTIVARIATE MIXTURE ANALYSIS. , 1970, Multivariate behavioral research.

[49]  G. W. Milligan,et al.  CLUSTERING VALIDATION: RESULTS AND IMPLICATIONS FOR APPLIED ANALYSES , 1996 .

[50]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[51]  James T. Luxhoj Neural Networks in Bioprocessing and Chemical Engineering , 1997 .

[52]  Remco R. Bouckaert,et al.  Properties of Bayesian Belief Network Learning Algorithms , 1994, UAI.

[53]  Thomas E. Marlin,et al.  Multivariate statistical monitoring of process operating performance , 1991 .

[54]  C. E. Schlags,et al.  Multivariate statistical analysis of an emulsion batch process , 1998 .

[55]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  G. Stephanopoulos,et al.  Representation of process trends—Part I. A formal representation framework , 1990 .

[57]  A. Morris,et al.  Artificial neural networks : studies in process modelling and control : Process operation and control , 1994 .

[58]  Wray L. Buntine,et al.  Graphical models for discovering knowledge , 1996, KDD 1996.

[59]  A. J. Morris,et al.  Confidence Bounds for Multivariate Process Performance Monitoring Charts , 1995 .

[60]  Tamás D. Gedeon,et al.  Data Mining of Inputs: Analysing Magnitude and Functional Measures , 1997, Int. J. Neural Syst..

[61]  Z. Pawlak Rough sets and fuzzy sets , 1985 .

[62]  Babu Joseph,et al.  Introduction to Wavelet Transform and Time-Frequency Analysis , 1994 .

[63]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[64]  John F. MacGregor,et al.  Product design through multivariate statistical analysis of process data , 1998 .

[65]  William A. Taylor What Every Engineer Should Know About Artificial Intelligence , 1988 .

[66]  Xindong Wu Knowledge Acquisition from Databases , 1995 .

[67]  James R. Whiteley,et al.  A similarity-based approach to interpretation of sensor data using adaptive resonance theory , 1994 .

[68]  Xindong Wu,et al.  Research and Development in Knowledge Discovery and Data Mining , 1998, Lecture Notes in Computer Science.

[69]  P. L. Goldsmith,et al.  Cumulative Sum Techniques. , 1965 .

[70]  David M. Himmelblau,et al.  The possible cause and effect graphs (PCEG) model for fault diagnosis-II. Applications , 1994 .

[71]  Peter C. Cheeseman,et al.  Bayesian Classification (AutoClass): Theory and Results , 1996, Advances in Knowledge Discovery and Data Mining.

[72]  Xue Z. Wang,et al.  An integrated data mining system and its application to process operational data analysis , 1999 .

[73]  Chieh-Li Chen,et al.  Fuzzy predictive control for the time-delay system , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[74]  R. T. Scarfe,et al.  Data mining applications in BT , 1995 .

[75]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[76]  Geoff Barton,et al.  Process control: Designing processes and control systems for dynamic performance , 1996 .

[77]  Ian D. Watson,et al.  An Introduction to Case-Based Reasoning , 1995, UK Workshop on Case-Based Reasoning.

[78]  O. O. Oyeleye,et al.  Qualitative simulation of chemical process systems: Steady‐state analysis , 1988 .

[79]  Nola D. Tracy,et al.  Multivariate Control Charts for Individual Observations , 1992 .

[80]  C. McGreavy,et al.  Automatic Classification for Mining Process Operational Data , 1998 .

[81]  G. David Garson,et al.  Interpreting neural-network connection weights , 1991 .

[82]  H. Hotelling Multivariate Quality Control-illustrated by the air testing of sample bombsights , 1947 .

[83]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[84]  Erkki Oja,et al.  Modified Hebbian learning for curve and surface fitting , 1992, Neural Networks.

[85]  Tom M. Mitchell,et al.  Version Spaces: A Candidate Elimination Approach to Rule Learning , 1977, IJCAI.

[86]  E. S. Gillespie,et al.  Application of sensitivity analysis to neural network determination of financial variable relationships , 1997 .

[87]  Liang-Sun Lee,et al.  Use of Fuzzy Cause-Effect Digraph for Resolution Fault Diagnosis for Process Plants. 1. Fuzzy Cause-Effect Digraph , 1995 .

[88]  Gary J. Powers,et al.  Operating procedure synthesis using local models and distributed goals , 1988 .

[89]  Venkat Venkatasubramanian,et al.  Petri net-Digraph models for automating HAZOP analysis of batch process plants , 1996 .

[90]  G.L.M. Koot,et al.  Statistical data analysis of a chemical plant , 1997 .

[91]  B. Bakshi Multiscale PCA with application to multivariate statistical process monitoring , 1998 .

[92]  Richard Baur,et al.  Dynamic simulation of reactive distillation: An MTBE case study , 1996 .

[93]  R. M. Miller,et al.  Modeling and control of a chemical waste water treatment plant , 1997 .

[94]  L. Wang,et al.  Fuzzy systems are universal approximators , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[95]  Wray L. Buntine A Guide to the Literature on Learning Probabilistic Networks from Data , 1996, IEEE Trans. Knowl. Data Eng..

[96]  Daryl Pregibon,et al.  A Statistical Perspective on Knowledge Discovery in Databases , 1996, Advances in Knowledge Discovery and Data Mining.

[97]  R. P. McDonald,et al.  A second generation nonlinear factor analysis , 1983 .

[98]  B. Everitt,et al.  Applied Multivariate Data Analysis. , 1993 .

[99]  David M. Dutton,et al.  A review of machine learning , 1997, The Knowledge Engineering Review.

[100]  Jacky Montmain,et al.  A supervision support system for industrial processes , 1993, IEEE Expert.

[101]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[102]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[103]  Amit Mehrotra,et al.  Observations and problems applying ART2 for dynamic sensor pattern interpretation , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[104]  S. P. Chitra Use neural networks for problem solving , 1993 .

[105]  Stéphane Mallat,et al.  Zero-crossings of a wavelet transform , 1991, IEEE Trans. Inf. Theory.

[106]  T. Pavlidis,et al.  Fuzzy sets and their applications to cognitive and decision processes , 1977 .

[107]  Stephen I. Gallant,et al.  Connectionist expert systems , 1988, CACM.

[108]  C. A. Vassiliadis,et al.  Artificial-Intelligence - Starting to Realize Its Practical Promise , 1995 .

[109]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[110]  Richard P. Brent,et al.  Fast training algorithms for multilayer neural nets , 1991, IEEE Trans. Neural Networks.

[111]  X. Z. Wang,et al.  Clustering of Infrared Spectra of Lubricating Base Oils Using Adaptive Resonance Theory , 1998, J. Chem. Inf. Comput. Sci..

[112]  Chonghun Han,et al.  Automatic construction of extended symptom-fault associations from the signed digraph , 1996 .

[113]  G. Stephanopoulos,et al.  Representation of process trends—Part II. The problem of scale and qualitative scaling , 1990 .

[114]  N. Bekiaris Multiple Steady States in Distillation , 1995 .

[115]  R. Bouckaert Minimum Description Length Principle , 1994 .

[116]  Carl G. Looney,et al.  Pattern recognition using neural networks: theory and algorithms for engineers and scientists , 1997 .

[117]  J. D. Jobson,et al.  Categorical and multivariate methods , 1992 .

[118]  Babu Joseph,et al.  Process Signal Features Analysis , 1994 .

[119]  Y. C. Huang,et al.  Application of fuzzy causal networks to waste water treatment plants , 1999 .

[120]  Farhi Marir,et al.  Case-based reasoning: A review , 1994, The Knowledge Engineering Review.

[121]  Liang-sun Lee,et al.  Quantifying signed directed graphs with the fuzzy set for fault diagnosis resolution improvement , 1994 .

[122]  George Stephanopoulos,et al.  Wavelet‐based modulation in control‐relevant process identification , 1998 .

[123]  J. Stuart Hunter,et al.  The exponentially weighted moving average , 1986 .

[124]  Brian C. Williams,et al.  Doing Time: Putting Qualitative Reasoning on Firmer Ground , 1986, AAAI.

[125]  S. W. Roberts Control chart tests based on geometric moving averages , 2000 .

[126]  Mark A. Kramer,et al.  Diagnosis using backpropagation neural networks—analysis and criticism , 1990 .

[127]  Jerzy W. Grzymala-Busse,et al.  The Rule Induction System LERS-a version for personal computers in Foun-dations of Computing and Dec , 1993 .

[128]  Celal Batur,et al.  Using inductive learning to determine fuzzy rules for dynamic systems , 1993 .

[129]  John F. MacGregor,et al.  Process monitoring and diagnosis by multiblock PLS methods , 1994 .

[130]  Jie Zhang,et al.  Expert systems in on-line process control and fault diagnosis , 1991 .

[131]  Peter Cheeseman,et al.  Bayesian classification theory , 1991 .

[132]  Francis J. Doyle,et al.  A dynamic neural network approach to nonlinear process modeling , 1997 .

[133]  Frank B. Alt,et al.  17 Multivariate process control , 1988 .

[134]  Ramaswamy Vaidyanathan,et al.  Process fault detection and diagnosis using neural networks , 1990 .

[135]  C. McGreavy,et al.  Data Mining for Failure Diagnosis of Process Units by Learning Probabilistic Networks , 1997 .

[136]  T. McAvoy,et al.  Nonlinear principal component analysis—Based on principal curves and neural networks , 1996 .

[137]  C. McGreavy,et al.  Application of wavelets and neural networks to diagnostic system development , 1999 .

[138]  N. V. Bhat,et al.  Use of neural nets for dynamic modeling and control of chemical process systems , 1990 .

[139]  J. F. Davis,et al.  A structured framework for efficient problem solving in diagnostic expert systems , 1988 .

[140]  John S. Oakland Statistical Process Control: A Practical Guide , 1990 .

[141]  Eiji O'Shima,et al.  A graphical approach to cause and effect analysis of chemical processing systems , 1980 .

[142]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[143]  A. J. Morris,et al.  Confidence bounds for neural network representations , 1997 .

[144]  William H. Press,et al.  Numerical recipes : the art of scientific computing : FORTRAN version , 1989 .

[145]  Stephen Grossberg,et al.  ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures , 1990, Neural Networks.

[146]  A. Kumar,et al.  Trend Analysis Using the Frazier-Jawerth Transform , 1994 .

[147]  R. F. Li,et al.  Combining Conceptual Clustering and Principal Component Analysis for State Space Based Process Monitoring , 1999 .

[148]  Jie Zhang,et al.  Process modelling and fault diagnosis using fuzzy neural networks , 1996, Fuzzy Sets Syst..

[149]  Shuang-Hua Yang,et al.  Fuzzy rule generation from data for process operational decision support , 1997 .

[150]  C. McGreavy,et al.  Learning dynamic fault models based on a fuzzy set covering method , 1997 .

[151]  Bhavik R. Bakshi,et al.  Representation of process trends—IV. Induction of real-time patterns from operating data for diagnosis and supervisory control , 1994 .

[152]  Cheol Hoon Park,et al.  A neural linearizing control scheme for nonlinear chemical processes , 1994 .

[153]  Yoh-Han Pao,et al.  Adaptive pattern recognition and neural networks , 1989 .

[154]  Theodora Kourti,et al.  Process analysis, monitoring and diagnosis, using multivariate projection methods , 1995 .

[155]  Martin Vetterli,et al.  Discrete-time wavelet extrema representation: design and consistent reconstruction , 1995, IEEE Trans. Signal Process..

[156]  Philip D. Wasserman,et al.  Neural computing - theory and practice , 1989 .

[157]  Kc Chow,et al.  Dynamic Principal Component Analysis Using Integral Transforms , 1998 .

[158]  C. McGreavy,et al.  Application of wavelets and neural networks to diagnostic system development, 2, an integrated framework and its application , 1999 .

[159]  Robert J. Hammell,et al.  Interpolation, Completion, and Learning Fuzzy Rules , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[160]  James Kelly,et al.  AutoClass: A Bayesian Classification System , 1993, ML.

[161]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[162]  Bhavik R. Bakshi,et al.  Reasoning in Time: Modeling, Analysis, and Pattern Recognition of Temporal Process Trends , 1995 .

[163]  Michael P. Lukas Distributed control systems - Their evaluation and design , 1986, Autom..

[164]  Mark A. Kramer,et al.  Improvement of the backpropagation algorithm for training neural networks , 1990 .

[165]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[166]  J. A. Bandoni,et al.  Robust PCA and normal region in multivariate statistical process monitoring , 1996 .

[167]  John F. MacGregor,et al.  Product Quality Control in Reduced Dimensional Spaces , 1998 .

[168]  Kevin Knight,et al.  Connectionist ideas and algorithms , 1990, CACM.

[169]  S. Qin,et al.  Self-validating inferential sensors with application to air emission monitoring , 1997 .

[170]  R. Gnanadesikan,et al.  Weighting and selection of variables for cluster analysis , 1995 .

[171]  Venkat Venkatasubramanian,et al.  Signed Digraph based Multiple Fault Diagnosis , 1997 .