Distinctive gene and protein characteristics of extremely piezophilic Colwellia

[1]  S. V. Nyholm,et al.  Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment , 2019, eLife.

[2]  F. Rodríguez-Valera,et al.  Marine-freshwater prokaryotic transitions require extensive changes in the predicted proteome , 2019, Microbiome.

[3]  Sarah K. Hu,et al.  Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean , 2019, Proceedings of the National Academy of Sciences.

[4]  V. Barbe,et al.  Complete genome sequence of Shewanella benthica DB21MT-2, an obligate piezophilic bacterium isolated from the deepest Mariana Trench sediment , 2019, Marine Genomics.

[5]  E. Allen,et al.  Microbial Community Diversity Within Sediments from Two Geographically Separated Hadal Trenches , 2019, Front. Microbiol..

[6]  Ji-A Jeong,et al.  Alanine dehydrogenases in mycobacteria , 2019, Journal of Microbiology.

[7]  D. Bartlett,et al.  A full-ocean-depth rated modular lander and pressure-retaining sampler capable of collecting hadal-endemic microbes under in situ conditions , 2019, Deep Sea Research Part I: Oceanographic Research Papers.

[8]  B. Baker,et al.  Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments , 2018, Nature Communications.

[9]  Jin Sun,et al.  Gut Microbial Divergence between Two Populations of the Hadal Amphipod Hirondellea gigas , 2018, Applied and Environmental Microbiology.

[10]  S. Bougouffa,et al.  Genome Reduction in Psychromonas Species within the Gut of an Amphipod from the Ocean’s Deepest Point , 2018, mSystems.

[11]  E. Allen,et al.  Vertically distinct microbial communities in the Mariana and Kermadec trenches , 2018, PloS one.

[12]  J. Deming,et al.  Low‐temperature chemotaxis, halotaxis and chemohalotaxis by the psychrophilic marine bacterium Colwellia psychrerythraea 34H , 2018, Environmental microbiology reports.

[13]  P. Duriez,et al.  A conserved tad pilus promotes Vibrio vulnificus oyster colonization , 2018, Environmental microbiology.

[14]  Xiang Xiao,et al.  Identification of a functional toxin–antitoxin system located in the genomic island PYG1 of piezophilic hyperthermophilic archaeon Pyrococcus yayanosii , 2018, Extremophiles.

[15]  S. Hallam,et al.  Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation , 2017, Science.

[16]  Yong-guan Zhu,et al.  Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic , 2017, Scientific Reports.

[17]  C. Wheat,et al.  A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer , 2017, The ISME Journal.

[18]  Yang Young Lu,et al.  VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data , 2017, Microbiome.

[19]  Alexander J. Probst,et al.  Simulation of Deepwater Horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders , 2017, Proceedings of the National Academy of Sciences.

[20]  D. Grogan,et al.  How a Genetically Stable Extremophile Evolves: Modes of Genome Diversification in the Archaeon Sulfolobus acidocaldarius , 2017, Journal of bacteriology.

[21]  Matthew R. Laird,et al.  IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets , 2017, Nucleic Acids Res..

[22]  S. Giovannoni,et al.  SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter , 2017, mBio.

[23]  D. Bartlett,et al.  Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. , 2017, International journal of systematic and evolutionary microbiology.

[24]  James Hadfield,et al.  Phandango: an interactive viewer for bacterial population genomics , 2017, bioRxiv.

[25]  C. Bienhold,et al.  Response of Bacterial Communities to Different Detritus Compositions in Arctic Deep-Sea Sediments , 2017, Front. Microbiol..

[26]  H. Gonda,et al.  Methane Production in Dairy Cows Correlates with Rumen Methanogenic and Bacterial Community Structure , 2017, Front. Microbiol..

[27]  M. Mußmann,et al.  Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments , 2017, The ISME Journal.

[28]  Xiang Xiao,et al.  An Integrative Genomic Island Affects the Adaptations of the Piezophilic Hyperthermophilic Archaeon Pyrococcus yayanosii to High Temperature and High Hydrostatic Pressure , 2016, Front. Microbiol..

[29]  S. L’Haridon,et al.  Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman Rise. , 2016, Systematic and applied microbiology.

[30]  Xiang Xiao,et al.  The Two Sets of DMSO Respiratory Systems of Shewanella piezotolerans WP3 Are Involved in Deep Sea Environmental Adaptation , 2016, Front. Microbiol..

[31]  M. Jebbar,et al.  High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii , 2016, Scientific Reports.

[32]  D. Bartlett,et al.  Identification of Free-Living and Particle-Associated Microbial Communities Present in Hadal Regions of the Mariana Trench , 2016, Front. Microbiol..

[33]  T. Hazen,et al.  Colwellia psychrerythraea Strains from Distant Deep Sea Basins Show Adaptation to Local Conditions , 2016, Front. Environ. Sci..

[34]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[35]  B. Fuchs,et al.  Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments , 2016, The ISME Journal.

[36]  J. Chun,et al.  OrthoANI: An improved algorithm and software for calculating average nucleotide identity. , 2016, International journal of systematic and evolutionary microbiology.

[37]  Vinicius Maracaja-Coutinho,et al.  A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm , 2016, PloS one.

[38]  P. Forterre,et al.  An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents. , 2015, Research in microbiology.

[39]  M. Touchon,et al.  Identification of protein secretion systems in bacterial genomes , 2015, Scientific Reports.

[40]  Sharon L. Grim,et al.  Chemical dispersants can suppress the activity of natural oil-degrading microorganisms , 2015, Proceedings of the National Academy of Sciences.

[41]  P. Oger,et al.  Genome expression of Thermococcus barophilus and Thermococcus kodakarensis in response to different hydrostatic pressure conditions. , 2015, Research in microbiology.

[42]  P. Pevzner,et al.  Single Cells within the Puerto Rico Trench Suggest Hadal Adaptation of Microbial Lineages , 2015, Applied and Environmental Microbiology.

[43]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[44]  B. Nunn,et al.  Proteomics of Colwellia psychrerythraea at subzero temperatures - a life with limited movement, flexible membranes and vital DNA repair. , 2015, Environmental microbiology.

[45]  E. Girard,et al.  Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes , 2015, Extremophiles.

[46]  Matthew B. Sullivan,et al.  VirSorter: mining viral signal from microbial genomic data , 2015, PeerJ.

[47]  Andrew J. Page,et al.  Roary: rapid large-scale prokaryote pan genome analysis , 2015, bioRxiv.

[48]  E. Delong,et al.  Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre , 2015, Front. Microbiol..

[49]  C. Duarte,et al.  Dilution limits dissolved organic carbon utilization in the deep ocean , 2015, Science.

[50]  James Wasmuth,et al.  Kablammo: an interactive, web-based BLAST results visualizer , 2015, Bioinform..

[51]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[52]  J. Jansson,et al.  Single-cell genomics reveals features of a Colwellia species that was dominant during the Deepwater Horizon oil spill , 2014, Front. Microbiol..

[53]  S. Ferriera,et al.  Ecotype Diversity and Conversion in Photobacterium profundum Strains , 2014, PloS one.

[54]  Alexander Sczyrba,et al.  Genomic and Metabolic Diversity of Marine Group I Thaumarchaeota in the Mesopelagic of Two Subtropical Gyres , 2014, PloS one.

[55]  A. Jamieson,et al.  Marine fish may be biochemically constrained from inhabiting the deepest ocean depths , 2014, Proceedings of the National Academy of Sciences.

[56]  Haiwei Luo,et al.  Single-cell genomics shedding light on marine Thaumarchaeota diversification , 2014, The ISME Journal.

[57]  E. Delong,et al.  Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype , 2014, The ISME Journal.

[58]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[59]  J. Bowman,et al.  Extensive Gene Acquisition in the Extremely Psychrophilic Bacterial Species Psychroflexus torquis and the Link to Sea-Ice Ecosystem Specialism , 2014, Genome biology and evolution.

[60]  N. Kyrpides,et al.  Genomic Encyclopedia of Type Strains, Phase I: The one thousand microbial genomes (KMG-I) project , 2013, Standards in genomic sciences.

[61]  F. Abe Dynamic structural changes in microbial membranes in response to high hydrostatic pressure analyzed using time-resolved fluorescence anisotropy measurement. , 2013, Biophysical chemistry.

[62]  I-Min A. Chen,et al.  IMG 4 version of the integrated microbial genomes comparative analysis system , 2013, Nucleic Acids Res..

[63]  E. Delong,et al.  Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone , 2013, The ISME Journal.

[64]  E. Pante,et al.  marmap: A Package for Importing, Plotting and Analyzing Bathymetric and Topographic Data in R , 2013, PloS one.

[65]  S. Ferriera,et al.  Complete Genome Sequence of the Deep-Sea Bacterium Psychromonas Strain CNPT3 , 2013, Genome Announcements.

[66]  S. Ferriera,et al.  Draft Genome Sequence of the Deep-Sea Bacterium Shewanella benthica Strain KT99 , 2013, Genome Announcements.

[67]  J. Deming,et al.  An inter-order horizontal gene transfer event enables the catabolism of compatible solutes by Colwellia psychrerythraea 34H , 2013, Extremophiles.

[68]  P. Bertin,et al.  The First Genomic and Proteomic Characterization of a Deep-Sea Sulfate Reducer: Insights into the Piezophilic Lifestyle of Desulfovibrio piezophilus , 2013, PloS one.

[69]  S. Campanaro,et al.  The transcriptional landscape of the deep-sea bacterium Photobacterium profundum in both a toxR mutant and its parental strain , 2012, BMC Genomics.

[70]  Natalia N. Ivanova,et al.  Complete Genome Sequence of the Thermophilic, Piezophilic, Heterotrophic Bacterium Marinitoga piezophila KA3 , 2012, Journal of bacteriology.

[71]  D. Bartlett,et al.  The Respiratory System of the Piezophile Photobacterium profundum SS9 Grown under Various Pressures , 2012, Bioscience, biotechnology, and biochemistry.

[72]  Vassilios Ioannidis,et al.  ExPASy: SIB bioinformatics resource portal , 2012, Nucleic Acids Res..

[73]  Xin Chen,et al.  dbCAN: a web resource for automated carbohydrate-active enzyme annotation , 2012, Nucleic Acids Res..

[74]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[75]  Elmar Pruesse,et al.  SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes , 2012, Bioinform..

[76]  C. Kato,et al.  Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement. , 2012, Biochimica et biophysica acta.

[77]  N. Moran,et al.  Extreme genome reduction in symbiotic bacteria , 2011, Nature Reviews Microbiology.

[78]  D. Valentine,et al.  Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill , 2011, Proceedings of the National Academy of Sciences.

[79]  E. Delong,et al.  Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean , 2011, Science.

[80]  L. Orellana,et al.  A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage , 2011, Applied Microbiology and Biotechnology.

[81]  P. Oger,et al.  Complete Genome Sequence of the Obligate Piezophilic Hyperthermophilic Archaeon Pyrococcus yayanosii CH1 , 2011, Journal of bacteriology.

[82]  Qi-Long Qin,et al.  Comparative genomics reveals a deep-sea sediment-adapted life style of Pseudoalteromonas sp. SM9913 , 2011, The ISME Journal.

[83]  P. Oger,et al.  Complete Genome Sequence of the Hyperthermophilic, Piezophilic, Heterotrophic, and Carboxydotrophic Archaeon Thermococcus barophilus MP , 2011, Journal of bacteriology.

[84]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[85]  P. Oger,et al.  The many ways of coping with pressure. , 2010, Research in microbiology.

[86]  H. Mori,et al.  Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments. , 2010, Molecular bioSystems.

[87]  Jim K. Fredrickson,et al.  Constraint-Based Model of Shewanella oneidensis MR-1 Metabolism: A Tool for Data Analysis and Hypothesis Generation , 2010, PLoS Comput. Biol..

[88]  B. Golinelli‐Pimpaneau,et al.  Insights into the hyperthermostability and unusual region-specificity of archaeal Pyrococcus abyssi tRNA m1A57/58 methyltransferase , 2010, Nucleic acids research.

[89]  Stephan Frickenhaus,et al.  Average genome size: a potential source of bias in comparative metagenomics , 2010, The ISME Journal.

[90]  F. Lauro,et al.  Importance of Proteins Controlling Initiation of DNA Replication in the Growth of the High-Pressure-Loving Bacterium Photobacterium profundum SS9 , 2009, Journal of bacteriology.

[91]  E. Delong,et al.  Comparative Metagenomic Analysis of a Microbial Community Residing at a Depth of 4,000 Meters at Station ALOHA in the North Pacific Subtropical Gyre , 2009, Applied and Environmental Microbiology.

[92]  J. Deming,et al.  Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. , 2009, Canadian journal of microbiology.

[93]  S. Maddocks,et al.  Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. , 2008, Microbiology.

[94]  R. Friedman,et al.  Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter , 2008, The ISME Journal.

[95]  F. Lauro,et al.  The Deep-Sea Bacterium Photobacterium profundum SS9 Utilizes Separate Flagellar Systems for Swimming and Swarming under High-Pressure Conditions , 2008, Applied and Environmental Microbiology.

[96]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[97]  C. Dutta,et al.  Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes , 2008, Genome Biology.

[98]  Songnian Hu,et al.  Environmental Adaptation: Genomic Analysis of the Piezotolerant and Psychrotolerant Deep-Sea Iron Reducing Bacterium Shewanella piezotolerans WP3 , 2008, PloS one.

[99]  G. Valle,et al.  Large-Scale Transposon Mutagenesis of Photobacterium profundum SS9 Reveals New Genetic Loci Important for Growth at Low Temperature and High Pressure , 2007, Journal of bacteriology.

[100]  Purificación López-García,et al.  Metagenomics of the Deep Mediterranean, a Warm Bathypelagic Habitat , 2007, PloS one.

[101]  Przemysław Biecek,et al.  The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms , 2007, BMC Genomics.

[102]  M. Tomich,et al.  The tad locus: postcards from the widespread colonization island , 2007, Nature Reviews Microbiology.

[103]  C. Kato,et al.  Bacterial adaptation to high pressure: a respiratory system in the deep-sea bacterium Shewanella violacea DSS12. , 2007, FEMS microbiology letters.

[104]  F. Lauro,et al.  The Unique 16S rRNA Genes of Piezophiles Reflect both Phylogeny and Adaptation , 2006, Applied and Environmental Microbiology.

[105]  S. Campanaro,et al.  Piezophilic adaptation: a genomic point of view. , 2006, Journal of biotechnology.

[106]  E. Delong,et al.  Community Genomics Among Stratified Microbial Assemblages in the Ocean's Interior , 2006, Science.

[107]  M. Matsuzaki,et al.  Phylogenetic analysis based on 16S rRNA gene sequences of deep-sea bacteria isolated from intestinal contents of deep-sea fishes retrieved from the abyssal zone. , 2005, The Journal of general and applied microbiology.

[108]  S. Campanaro,et al.  Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains , 2005, BMC Genomics.

[109]  C. Fraser,et al.  The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[110]  P. Yancey,et al.  Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses , 2005, Journal of Experimental Biology.

[111]  S. Campanaro,et al.  Life at Depth: Photobacterium profundum Genome Sequence and Expression Analysis , 2005, Science.

[112]  Massimo Di Giulio,et al.  A comparison of proteins from Pyrococcus furiosus and Pyrococcus abyssi: barophily in the physicochemical properties of amino acids and in the genetic code. , 2005 .

[113]  K. Horikoshi,et al.  Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. , 2004, International journal of systematic and evolutionary microbiology.

[114]  G. Somero Protein adaptations to temperature and pressure: complementary roles of adaptive changes in amino acid sequence and internal milieu. , 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[115]  S. Faruque,et al.  Pathogenicity islands and phages in Vibrio cholerae evolution. , 2003, Trends in microbiology.

[116]  Rob DeSalle,et al.  The Widespread Colonization Island of Actinobacillus actinomycetemcomitans , 2003, Nature Genetics.

[117]  G. Sarath,et al.  Mycobacterium smegmatisl-Alanine Dehydrogenase (Ald) Is Required for Proficient Utilization of Alanine as a Sole Nitrogen Source and Sustained Anaerobic Growth , 2002, Journal of bacteriology.

[118]  M. Roberts,et al.  Solute accumulation in the deep-sea bacterium Photobacterium profundum , 2002, Extremophiles.

[119]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[120]  P. Yancey,et al.  Trimethylamine oxide counteracts effects of hydrostatic pressure on proteins of deep-sea teleosts. , 2001, The Journal of experimental zoology.

[121]  J. Deming,et al.  Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. , 2000, Environmental microbiology.

[122]  K. Horikoshi,et al.  Pressure Regulation of Soluble Cytochromesc in a Deep-Sea Piezophilic Bacterium,Shewanella violacea , 2000, Journal of bacteriology.

[123]  J. McDonald,et al.  Patterns of temperature adaptation in proteins from Methanococcus and Bacillus. , 1999, Molecular biology and evolution.

[124]  E. Allen,et al.  Monounsaturated but Not Polyunsaturated Fatty Acids Are Required for Growth of the Deep-Sea BacteriumPhotobacterium profundum SS9 at High Pressure and Low Temperature , 1999, Applied and Environmental Microbiology.

[125]  T. Dick,et al.  Increased alanine dehydrogenase activity during dormancy in Mycobacterium smegmatis. , 1998, FEMS microbiology letters.

[126]  G. Hummer,et al.  The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[127]  H. Saito,et al.  Adaptive Changes in Membrane Lipids of Barophilic Bacteria in Response to Changes in Growth Pressure , 1998, Applied and Environmental Microbiology.

[128]  A Bairoch,et al.  Arac/XylS family of transcriptional regulators , 1997, Microbiology and molecular biology reviews : MMBR.

[129]  F. Meinhardt,et al.  cis-trans isomerization of unsaturated fatty acids: cloning and sequencing of the cti gene from Pseudomonas putida P8 , 1997, Applied and environmental microbiology.

[130]  R. Simpson,et al.  The effect of high hydrostatic pressure on the activity of intracellular enzymes of Listeria monocytogenes , 1997, Letters in applied microbiology.

[131]  E. Delong,et al.  Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria , 1997, Applied and environmental microbiology.

[132]  H. Keweloh,et al.  cis/trans isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity inPseudomonas putida P8 , 1996, Lipids.

[133]  D. Bartlett,et al.  An rpoE‐like locus controls outer membrane protein synthesis and growth at cold temperatures and high pressures in the deep‐sea bacterium Photobacterium sp. strain SS9 , 1995, Molecular microbiology.

[134]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[135]  M. Silverman,et al.  Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium , 1989, Nature.

[136]  J. Deming,et al.  Isolation of an Obligately Barophilic Bacterium and Description of a New Genus, Colwellia gen. nov. , 1988 .

[137]  A. Yayanos Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[138]  E. Delong,et al.  Biochemical Function and Ecological Significance of Novel Bacterial Lipids in Deep-Sea Procaryotes , 1986, Applied and environmental microbiology.

[139]  E. Delong,et al.  Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. , 1985, Science.

[140]  R. Colwell,et al.  Activity and growth of microbial populations in pressurized deep-sea sediment and animal gut samples , 1982, Applied and environmental microbiology.

[141]  A. Yayanos,et al.  Obligately barophilic bacterium from the Mariana trench. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[142]  R. Meganathan,et al.  Loss of Bacterial Motility under Pressure , 1973, Nature.

[143]  Logan M. Peoples Composition and Functional Potential of Hadal Microbial Communities , 2018 .

[144]  D. Bartlett,et al.  Ecogenomics of Deep-Ocean Microbial Bathytypes , 2017 .

[145]  Y. Nogi Microbial Life in the Deep Sea: Psychropiezophiles , 2017 .

[146]  J. Bowman The Family Colwelliaceae , 2014 .

[147]  Arcady Mushegian,et al.  Metagenomic Analysis of Hadopelagic Microbial Assemblages Thriving at the Deepest Part of Mediterranean Sea, Matapan-vavilov Deepe Mi_2827 1..16 , 2022 .

[148]  C. Navarro,et al.  Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. , 2013, Biological research.

[149]  J. Deming,et al.  Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage–host interactions , 2012, Extremophiles.

[150]  S. Salzberg,et al.  FLASH: fast length adjustment of short reads to improve genome assemblies , 2011, Bioinform..

[151]  H. Lester,et al.  Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean , 2011 .

[152]  T. Bachmann,et al.  Is the Genetic Landscape of the Deep Subsurface Biosphere Affected by Viruses? , 2011, Front. Microbio..

[153]  Jens Roat Kultima,et al.  genoPlotR: comparative gene and genome visualization in R , 2010 .

[154]  F. Lauro,et al.  Prokaryotic lifestyles in deep sea habitats , 2007, Extremophiles.

[155]  Douglas H. Bartlett,et al.  Prokaryotic lifestyles in deep sea habitats , 2006, Extremophiles.

[156]  Massimo Di Giulio,et al.  A comparison of proteins from Pyrococcus furiosus and Pyrococcus abyssi: barophily in the physicochemical properties of amino acids and in the genetic code. , 2005, Gene.

[157]  D. Bartlett,et al.  Genetic characterization of ompH mutants in the deep-sea bacterium Photobacterium sp. strain SS9 , 2004, Archives of Microbiology.

[158]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[159]  Owen White,et al.  TIGR Assembler: A New Tool for Assembling Large Shotgun Sequencing Projects , 1995 .

[160]  G. Somero Adaptations to high hydrostatic pressure. , 1992, Annual review of physiology.

[161]  S. Yooseph,et al.  Going Deeper: Metagenome of a Hadopelagic Microbial Community , 2011, PloS one.