Creating an artificial two-dimensional Skyrmion crystal by nanopatterning.

A Skyrmion crystal typically arises from helical spin structures induced by the Dzyaloshinskii-Moriya interaction. Experimentally its physical exploration has been impeded because it is a rarity and is found only within a narrow temperature and magnetic field range. We present a method for the assembly of a two-dimensional Skyrmion crystal based upon a combination of a perpendicularly magnetized film and nanopatterned arrays of magnetic vortices that are geometrically confined within nanodisks. The practical feasibility of the method is validated by micromagnetic simulations and computed Skyrmion number per unit cell. We also quantify a wide range in temperature and field strength over which the Skyrmion crystal can be stabilized without the need for any intrinsic Dzyaloshinskii-Moriya interactions, which otherwise is needed to underpin the arrangement as is the case in the very few known Skyrmion crystal cases. Thus, our suggested scheme involves a qualitative breakthrough that comes with a substantial quantitative advance.

[1]  A. Hubert,et al.  Magnetic Domains: The Analysis of Magnetic Microstructures , 2014 .

[2]  Y. Tokura,et al.  Skyrmion flow near room temperature in an ultralow current density , 2012, Nature Communications.

[3]  C. Chien,et al.  Extended Skyrmion phase in epitaxial FeGe(111) thin films. , 2012, Physical review letters.

[4]  Y. Tokura,et al.  Observation of magnetic excitations of Skyrmion crystal in a helimagnetic insulator Cu2OSeO3. , 2012, Physical review letters.

[5]  C. Burrowes,et al.  Exchange stiffness in thin film Co alloys , 2012 .

[6]  Z. Pang,et al.  Micromagnetic simulation of magnetic vortex cores in circular permalloy disks: Switching behavior in external magnetic field , 2012 .

[7]  M. Mochizuki Spin-wave modes and their intense excitation effects in Skyrmion crystals. , 2011, Physical review letters.

[8]  O. Petrova,et al.  Spin waves in a skyrmion crystal , 2011, 1109.4990.

[9]  U. Rößler,et al.  Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? , 2011, 1102.2726.

[10]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[11]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[12]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[13]  C. Pfleiderer,et al.  Skyrmion lattice in the doped semiconductor Fe1-xCoxSi , 2009, 0903.2587.

[14]  T. Gredig,et al.  Angular Dependence of Vortex Annihilation Fields in Asymmetric Co Dots , 2009, 0906.3877.

[15]  P. Böni,et al.  Topological Hall effect in the A phase of MnSi. , 2009, Physical review letters.

[16]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[17]  Y. Tokura,et al.  Unusual Hall effect anomaly in MnSi under pressure. , 2008, Physical review letters.

[18]  B. Diény,et al.  Extraordinary Hall effect in thin magnetic films and its potential for sensors, memories and magnetic logic applications , 2008 .

[19]  J. Cumings,et al.  Direct observation of the ice rule in an artificial kagome spin ice , 2008, 0802.0034.

[20]  O. Tchernyshyov,et al.  Vortices in thin ferromagnetic films and the skyrmion number , 2006, cond-mat/0611392.

[21]  R. Hertel,et al.  Exchange explosions: Magnetization dynamics during vortex-antivortex annihilation. , 2006, Physical review letters.

[22]  V. Crespi,et al.  Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands , 2006, Nature.

[23]  H. Takagi,et al.  Doping dependence of transport properties in Fe 1 − x Co x Si , 2005 .

[24]  Dongqi Li,et al.  Magnetic bistability of Co nanodots. , 2005, Physical review letters.

[25]  R. Hertel,et al.  Micromagnetic study of magnetic configurations in submicron permalloy disks , 2003 .

[26]  Bogdanov An,et al.  Skyrmions in nematic liquid crystals. , 2003 .

[27]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .

[28]  R. Cowburn,et al.  Single-Domain Circular Nanomagnets , 1999 .

[29]  E. Beaurepaire,et al.  Structural order related to the magnetic anisotropy in epitaxial (111) CoPt3 alloy films , 1997 .

[30]  Brey,et al.  Skyrme crystal in a two-dimensional electron gas. , 1995, Physical review letters.

[31]  S. Sondhi,et al.  Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. , 1993, Physical review. B, Condensed matter.

[32]  I. Klebanov Nuclear matter in the skyrme model , 1985 .

[33]  T. Skyrme A Unified Field Theory of Mesons and Baryons , 1962 .

[34]  T. Skyrme,et al.  Particle states of a quantized meson field , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[36]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .