Piecewise linear mapping optimization based on the complex view

We present an efficient modified Newton iteration for the optimization of nonlinear energies on triangle meshes. Noting that the linear mapping between any pair of triangles is a special case of harmonic mapping, we build upon the results of Chen and Weber [ CW17 ]. Based on the complex view of the linear mapping, we show that the Hessian of the isometric energies has a simple and compact analytic expression. This allows us to analytically project the per‐element Hessians to positive semidefinite matrices for efficient Newton iteration. We show that our method outperforms state‐of‐the‐art methods on 2D deformation and parameterization. Further, we inspect the spectra of the per triangle energy Hessians and show that given an initial mapping, simple global scaling can shift the energy towards a more convex state. This allows Newton iteration to converge faster than starting from the given initial state. Additionally, our formulations support adding an energy smoothness term to the optimization with little additional effort, which improves the mapping results such that concentrated distortions are reduced.

[1]  Scott Schaefer,et al.  Isometry‐Aware Preconditioning for Mesh Parameterization , 2017, Comput. Graph. Forum.

[2]  Edmond Chow,et al.  Preserving Symmetry in Preconditioned Krylov Subspace Methods , 1998, SIAM J. Sci. Comput..

[3]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..

[4]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[5]  Hugues Hoppe,et al.  Inter-surface mapping , 2004, ACM Trans. Graph..

[6]  Yaron Lipman,et al.  Injective and bounded distortion mappings in 3D , 2013, ACM Trans. Graph..

[7]  Robert Bridson,et al.  Blended cured quasi-newton for distortion optimization , 2018, ACM Trans. Graph..

[8]  Theodore Kim,et al.  Stable Neo-Hookean Flesh Simulation , 2018, ACM Trans. Graph..

[9]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[10]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[11]  Leonidas J. Guibas,et al.  As‐Killing‐As‐Possible Vector Fields for Planar Deformation , 2011, Comput. Graph. Forum.

[12]  Ofir Weber,et al.  Fast Planar Harmonic Deformations with Alternating Tangential Projections , 2017, Comput. Graph. Forum.

[13]  Hongyi Xu,et al.  Nonlinear material design using principal stretches , 2015, ACM Trans. Graph..

[14]  Roi Poranne,et al.  Simple Approximations of Planar Deformation Operators , 2016 .

[15]  KavanLadislav,et al.  Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials , 2017 .

[16]  Bailin Deng,et al.  Anderson acceleration for geometry optimization and physics simulation , 2018, ACM Trans. Graph..

[17]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[18]  Olga Sorkine-Hornung,et al.  Locally Injective Mappings , 2013 .

[19]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[20]  Ligang Liu,et al.  Progressive parameterizations , 2018, ACM Trans. Graph..

[21]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[22]  W. T. Tutte How to Draw a Graph , 1963 .

[23]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[24]  Olga Sorkine-Hornung,et al.  Geometric optimization via composite majorization , 2017, ACM Trans. Graph..

[25]  Olga Sorkine-Hornung,et al.  Scalable locally injective mappings , 2017, TOGS.

[26]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[27]  Ofir Weber,et al.  GPU-accelerated locally injective shape deformation , 2017, ACM Trans. Graph..

[28]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[29]  J. Geelen ON HOW TO DRAW A GRAPH , 2012 .

[30]  Christian Rössl,et al.  Smoothed Quadratic Energies on Meshes , 2014, ACM Trans. Graph..

[31]  Ronen Basri,et al.  Large-scale bounded distortion mappings , 2015, ACM Trans. Graph..

[32]  Yaron Lipman,et al.  Bounded distortion mapping spaces for triangular meshes , 2012, ACM Trans. Graph..

[33]  Yaron Lipman,et al.  Accelerated quadratic proxy for geometric optimization , 2016, ACM Trans. Graph..

[34]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[35]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[36]  Ronen Basri,et al.  Controlling singular values with semidefinite programming , 2014, ACM Trans. Graph..

[37]  H. Hochstadt Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable; 3rd ed. (Lars V. Ahlfors) , 1980 .

[38]  Alexey Stomakhin,et al.  Energetically consistent invertible elasticity , 2012, SCA '12.

[39]  Craig Gotsman,et al.  Approximating Planar Conformal Maps Using Regular Polygonal Meshes , 2017, Comput. Graph. Forum.

[40]  Denis Zorin,et al.  Robust field-aligned global parametrization , 2014, ACM Trans. Graph..

[41]  Craig Gotsman,et al.  Smooth Rotation Enhanced As-Rigid-As-Possible Mesh Animation , 2015, IEEE Transactions on Visualization and Computer Graphics.