Explorer Semantic Domains for Combining Probability and NonDeterminism

We present domain-theoretic models that support both probabilistic and nondeterministic choice. In [36], Morgan and McIver developed an ad hoc semantics for a simple imperative language with both probabilistic and nondeterministic choice operators over a discrete state space, using domain-theoretic tools. We present a model also using domain theory in the sense of D.S. Scott (see e.g. [15]), but built over quite general continuous domains instead of discrete state spaces. Our construction combines the well-known domains modelling nondeterminism – the lower, upper and convex powerdomains, with the probabilistic powerdomain of Jones and Plotkin [24] modelling probabilistic choice. The results are variants of the upper, lower and convex powerdomains over the probabilistic powerdomain (see Chapter 4). In order to prove the desired universal equational properties of these combined powerdomains, we develop sandwich and separation theorems of Hahn-Banach type for Scott-continuous linear, suband superlinear functionals on continuous directed complete partially ordered cones, endowed with their Scott topologies, in analogy to the corresponding theorems for topological vector spaces in functional analysis (see Chapter 3). In the end, we show that our semantic domains work well for the language used by Morgan and McIver.

[1]  Abbas Edalat,et al.  An Extension Result for Continuous Valuations , 2000 .

[2]  Michael W. Mislove,et al.  Local compactness and continuous lattices , 1981 .

[3]  C. Jones,et al.  A probabilistic powerdomain of evaluations , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[4]  P. Spreij Probability and Measure , 1996 .

[5]  Dexter Kozen,et al.  Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[6]  L. Nachbin Topology and order , 1965 .

[7]  S. Lane Categories for the Working Mathematician , 1971 .

[8]  Annabelle McIver,et al.  Probabilistic Models for the Guarded Command Language , 1997, Sci. Comput. Program..

[9]  Abbas Edalat Domain Theory and Integration , 1995, Theor. Comput. Sci..

[10]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[11]  Klaus Keimel,et al.  The probabilistic powerdomain for stably compact spaces , 2004, Theor. Comput. Sci..

[12]  Daniele Varacca,et al.  The powerdomain of indexed valuations , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[13]  Jan Paseka,et al.  A direct proof of the Hofmann-Mislove theorem , 1994 .

[14]  Peter T. Johnstone,et al.  Scott is not always sober , 1981 .

[15]  Klaus Keimel,et al.  Continuous Lattices and Domains: Preface , 2003 .

[16]  Nicu Boboc,et al.  Order and Convexity in Potential Theory: H-Cones , 1981 .

[17]  Gordon D. Plotkin,et al.  A Powerdomain Construction , 1976, SIAM J. Comput..

[18]  Annabelle McIver,et al.  Partial correctness for probabilistic demonic programs , 2001, Theor. Comput. Sci..

[19]  Regina Tix,et al.  Some results on Hahn-Banach-type theorems for continuous D-cones , 2001, Theor. Comput. Sci..

[20]  Claire Jones,et al.  Probabilistic non-determinism , 1990 .

[21]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[22]  Klaus Keimel,et al.  Ordered cones and approximation , 1992 .

[23]  Walter Roth,et al.  Hahn-Banach Type Theorems for Locally Convex Cones , 2000, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[24]  Glynn Winskel,et al.  A Complete System for SCCS with Modal Assertions , 1985, FSTTCS.

[25]  Michael G. Main,et al.  Free Constructions of Powerdomains , 1985, Mathematical Foundations of Programming Semantics.

[26]  Reinhold Heckmann,et al.  Spaces of Valuations , 1996 .

[27]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[28]  Abbas Edalat,et al.  Power Domains and Iterated Function Systems , 1996, Inf. Comput..

[29]  J. K. Hunter,et al.  Measure Theory , 2007 .

[30]  Edsger W. Dijkstra,et al.  A Discipline of Programming , 1976 .

[31]  Achim Jung,et al.  The troublesome probabilistic powerdomain , 1997, COMPROX.

[32]  Klaus Keimel,et al.  The way-below relation of function spaces over semantic domains , 1998 .

[33]  Gordon D. Plotkin,et al.  A Powerdomain for Countable Non-Determinism (Extended Abstract) , 1982, ICALP.

[34]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[35]  Regina Tix,et al.  Continuous D-cones: convexity and powerdomain constructions , 1999 .

[36]  Daniele Varacca,et al.  Probability, Nondeterminism and Concurrency: Two Denotational Models for Probabilistic Computation , 2003 .

[37]  Dana S. Scott,et al.  A Type-Theoretical Alternative to ISWIM, CUCH, OWHY , 1993, Theor. Comput. Sci..

[38]  M. Smyth Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.

[39]  N. Saheb-Djahromi,et al.  CPO'S of Measures for Nondeterminism , 1980, Theor. Comput. Sci..

[40]  Reinhold Heckmann,et al.  Power Domain Constructions , 1991, Sci. Comput. Program..

[41]  Abbas Edalat,et al.  Dynamical Systems, Measures and Fractals via Domain Theory , 1993, Inf. Comput..

[42]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[43]  Annabelle McIver,et al.  Probabilistic predicate transformers , 1996, TOPL.

[44]  Andrea Schalk,et al.  Algebras for generalized power constructions , 1993 .

[45]  Jimmie D. Lawson The Versatile Continuous Order , 1987, MFPS.