A simple moving mesh method for one-and two-dimensional phase-field equations

A simple moving mesh method is proposed for solving phase-field equations. The numerical strategy is based on the approach proposed in Li et al. [J. Comput. Phys. 170 (2001) 562-588] to separate the mesh-moving and PDE evolution. The phase-field equations are discretized by a finite-volume method, and the mesh-moving part is realized by solving the conventional Euler-Lagrange equations with the standard gradient-based monitors. Numerical results demonstrate the accuracy and effectiveness of the proposed algorithm.

[1]  John A. Mackenzie,et al.  The Numerical Solution of One-Dimensional Phase Change Problems Using an Adaptive Moving Mesh Method , 2000 .

[2]  B. Chalmers Principles of Solidification , 1964 .

[3]  Paul A. Zegeling,et al.  Algorithm 731: A moving-grid interface for systems of one-dimensional time-dependent partial differential equations , 1994, TOMS.

[4]  Gunduz Caginalp,et al.  Phase Field Computations of Single-Needle Crystals, Crystal Growth, and Motion by Mean Curvature , 1994, SIAM J. Sci. Comput..

[5]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[6]  A moving-grid interface for systems of one-dimensional time-dependent partial differential equations , 1989 .

[7]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[8]  Yunqing Huang,et al.  Moving mesh methods with locally varying time steps , 2004 .

[9]  Bruce T. Murray,et al.  Adaptive phase-field computations of dendritic crystal growth , 1997 .

[10]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[11]  Paul A. Zegeling,et al.  On Resistive MHD Models with Adaptive Moving Meshes , 2005, J. Sci. Comput..

[12]  C. D. Boor,et al.  Good approximation by splines with variable knots. II , 1974 .

[13]  Robert D. Russell,et al.  Moving Mesh Strategy Based on a Gradient Flow Equation for Two-Dimensional Problems , 1998, SIAM J. Sci. Comput..

[14]  Pingwen Zhang,et al.  A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions , 2002 .

[15]  J. Mackenzie,et al.  A moving mesh method for the solution of the one-dimensional phase-field equations , 2002 .

[16]  Robert D. Russell,et al.  Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .

[17]  M. Baines Moving finite elements , 1994 .

[18]  Keith Miller,et al.  Moving Finite Elements. I , 1981 .

[19]  Department of Physics,et al.  EFFICIENT COMPUTATION OF DENDRITIC MICROSTRUCTURES USING ADAPTIVE MESH REFINEMENT , 1998 .

[20]  Graham F. Carey,et al.  Book reviewComputational techniques and applications, CTAC-83: J. Noye and C. Fletcher, eds. (North-Holland, Amsterdam, 1984), 982 pp., ISBN 0 444 875271 , 1985 .

[21]  G. Caginalp,et al.  Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. , 1989, Physical review. A, General physics.

[22]  A Lagrangian Moving Finite Element Method incorporating Monitor Functions , 2003 .

[23]  A. A. Wheeler,et al.  Thermodynamically-consistent phase-field models for solidification , 1992 .

[24]  G. McFadden,et al.  Morphological instability in phase-field models of solidification. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  J. F. Mccarthy One-Dimensional Phase Field Models With Adaptive Grids , 1998 .

[26]  Ricardo H. Nochetto,et al.  An Adaptive Finite Element Method for Two-Phase Stefan Problems in Two Space Dimensions. II: Implementation and Numerical Experiments , 1991, SIAM J. Sci. Comput..

[27]  G. Caginalp,et al.  Computation of sharp phase boundaries by spreading: the planar and spherically symmetric cases , 1991 .

[28]  N. Goldenfeld,et al.  Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures , 1998, cond-mat/9808216.

[29]  George Beckett,et al.  An r-adaptive finite element method for the solution of the two-dimensional phase-field equations , 2006 .

[30]  Tao Tang,et al.  An adaptive mesh redistribution algorithm for convection-dominated problems , 2002 .

[31]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .