Remote Sensing of Selected Biophysical Variables and Urban/Suburban Phenomena

Remote sensing science may be used to provide spatially distributed information for a significant number of models and applications. Information is extracted from remotely sensed data using the remote sensing process, which includes stating the problem, data collection (in situ and remote sensing), data-to-information conversion, and information presentation. The process requires a thorough understanding of the spatial, spectral, temporal, radiometric, and angular characteristics of the remotely sensed data. Advances in remote sensing of national spatial data infrastructure (NSDI) framework foundation variables (e.g., geodetic control, orthoimagery, digital elevation models) and selected framework thematic variables (e.g., land use/cover data, vegetation type and condition) are examined. The chapter concludes with a summary of advances in information extraction techniques and the integration of GIS and remote sensing.

[1]  Feng Gao,et al.  Characterization of North American land cover from NOAA‐AVHRR data using the EOS MODIS Land Cover Classification Algorithm , 2000 .

[2]  M. Hodgson What Size Window for Image Classification? A Cognitive Perspective , 1998 .

[3]  A. Huete,et al.  MODIS VEGETATION INDEX ( MOD 13 ) ALGORITHM THEORETICAL BASIS DOCUMENT Version 3 . 1 Principal Investigators , 1999 .

[4]  William J. Emery,et al.  Automated extraction of pack ice motion from advanced very high resolution radiometer imagery , 1986 .

[5]  J. R. Jensen,et al.  Creation of digital terrain models using an adaptive lidar vegetation point removal process , 2002 .

[6]  Paul A. Longley,et al.  Geocomputation: a primer , 1998 .

[7]  J. Townshend,et al.  Detection of land cover changes using MODIS 250 m data , 2002 .

[8]  Michael E. Hodgson,et al.  A GIS-ASSISTED RAIL CONSTRUCTION ECONOMETRIC MODEL THAT INCORPORATES LIDAR DATA , 2000 .

[9]  J. Townshend,et al.  NDVI-derived land cover classifications at a global scale , 1994 .

[10]  G. A. Blackburn,et al.  Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery , 2002 .

[11]  S. Walsh,et al.  An overview of scale, pattern, process relationships in geomorphology: a remote sensing and GIS perspective , 1998 .

[12]  C. Tucker,et al.  Expansion and Contraction of the Sahara Desert from 1980 to 1990 , 1991, Science.

[13]  Christopher O. Justice,et al.  Towards operational monitoring of terrestrial systems by moderate-resolution remote sensing , 2002 .

[14]  Jinfei Wang,et al.  A rule-based urban land use inferring method for fine-resolution multispectral imagery , 2003 .

[15]  W. Cohen,et al.  An improved strategy for regression of biophysical variables and Landsat ETM+ data. , 2003 .

[16]  John R. Jensen,et al.  Issues involving the creation of digital elevation models and terrain corrected orthoimagery using soft‐copy photogrammetry , 1995 .

[17]  Limin Yang,et al.  Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data , 2000 .

[18]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[19]  P. Stern,et al.  People and pixels : linking remote sensing and social science , 1999 .

[20]  P. Curran,et al.  Review Article Remote sensing methodologies and geography , 1987 .

[21]  J. Kerr,et al.  From space to species: ecological applications for remote sensing , 2003 .

[22]  J. Little,et al.  Digital Representation of Three-Dimensional Surfaces by Triangulated Irregular Networks (TIN). REVISED. , 1976 .

[23]  R. Finley,et al.  Interpretation of surface-water circulation, Aransas Pass, Texas, using landsat imagery , 1980 .

[24]  J. R. Jensen Remote Sensing of the Environment: An Earth Resource Perspective , 2000 .

[25]  J. A. Tullis,et al.  Synergistic Use of Lidar and Color Aerial Photography for Mapping Urban Parcel Imperviousness , 2003 .

[26]  Sucharita Gopal,et al.  Visualization based on the fuzzy ARTMAP neural network for mining remotely sensed data , 2001 .

[27]  Xueqiao Huang,et al.  A Machine-Learning Approach to Automated Knowledge-Base Building for Remote Sensing Image Analysis with GIs Data , 1997 .

[28]  Mark T. Morgan,et al.  Remote sensing changing natural resource management , 2003 .

[29]  C. Justice,et al.  The 1 km resolution global data set: needs of the International Geosphere Biosphere Programme† , 1994 .

[30]  J. Colby,et al.  Topographic Normalization in Rugged Terrain , 1991 .

[31]  P. Teillet Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions , 1997 .

[32]  C. Tucker,et al.  Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999 , 2003, Science.

[33]  Giles M. Foody,et al.  Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data , 1996 .

[34]  David G. Stork,et al.  Pattern Classification , 1973 .

[35]  Christopher P. Quine,et al.  An investigation of the potential of digital photogrammetry to provide measurements of forest characteristics and abiotic damage , 2000 .

[36]  James R. Anderson,et al.  A land use and land cover classification system for use with remote sensor data , 1976 .

[37]  D. Mason,et al.  Image processing of airborne scanning laser altimetry data for improved river flood modelling , 2001 .

[38]  Åsa Persson,et al.  Detecting and measuring individual trees using an airborne laser scanner , 2002 .

[39]  Alan H. Strahler,et al.  The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research , 1998, IEEE Trans. Geosci. Remote. Sens..

[40]  John R. Jensen,et al.  Remote Sensing of Biomass, Leaf‐Area‐Index, and Chlorophyll a and b Content in the ACE Basin National Estuarine Research Reserve Using Sub‐meter Digital Camera Imagery , 2002 .

[41]  F. Kogan Operational Space Technology for Global Vegetation Assessment , 2001 .

[42]  J. R. Jensen,et al.  Bidirectional Reflectance Distribution Function (BRDF) Characteristics of Smooth Cordgrass (Spartina alterniflora) Obtained Using a Sandmeier Field Goniometer , 2000 .

[43]  Michael E. Hodgson,et al.  Visual Categorization with Aerial Photographs , 2002 .

[44]  Daniel G. Brown,et al.  Supervised classification of types of glaciated landscapes using digital elevation data , 1998 .

[45]  Ryan R. Jensen,et al.  Using Low‐Resolution Satellite Data to Quantify Terrestrial Carbon in Tropical Areas , 2001 .

[46]  V. Krasnopolsky,et al.  The Feasibility of Estimating Ocean Surface Currents on an Operational Basis Using Satellite Feature Tracking Methods , 1994 .

[47]  Mark Gahegan,et al.  Is inductive machine learning just another wild goose (or might it lay the golden egg)? , 2003, Int. J. Geogr. Inf. Sci..

[48]  J. Blair,et al.  Modeling laser altimeter return waveforms over complex vegetation using high‐resolution elevation data , 1999 .

[49]  David J. Maguire,et al.  Geographical Information Systems , 1993 .

[50]  A. Strahler,et al.  Application of the MODIS global supervised classification model to vegetation and land cover mapping of Central America , 2000 .

[51]  Fang Qiu,et al.  A Neural Network Image Interpretation System to Extract Rural and Urban Land Use and Land Cover Information from Remote Sensor Data , 2001 .

[52]  Mark A. Friedl,et al.  Using prior probabilities in decision-tree classification of remotely sensed data , 2002 .

[53]  M. Hodgson,et al.  An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs , 2003 .

[54]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[55]  Jeong Chang Seong,et al.  Fuzzy Image Classification for Continental-Scale Multitemporal NDVI Series Images Using Invariant Pixels and an Image Stratification Method , 2001 .

[56]  Chris Rizos Introducing the Global Positioning System , 2001 .

[57]  Zachary H. Bowen,et al.  EVALUATION OF LIGHT DETECTION AND RANGING (LIDAR) FOR MEASURING RIVER CORRIDOR TOPOGRAPHY 1 , 2002 .

[58]  J. Chandler,et al.  Evaluation of Lidar and Medium Scale Photogrammetry for Detecting Soft‐Cliff Coastal Change , 2002 .

[59]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[60]  John E. Estes,et al.  Image interpretation keys for Validation of global land-cover data sets , 1999 .

[61]  J. Townshend,et al.  Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers , 1998 .

[62]  S. Plummer,et al.  Perspectives on combining ecological process models and remotely sensed data , 2000 .

[63]  C. Tomlin Geographic information systems and cartographic modeling , 1990 .

[64]  J. A. Tullis,et al.  Expert System House Detection in High Spatial Resolution Imagery Using Size, Shape, and Context , 2003 .

[65]  Scott J. Goetz Recent advances in remote sensing of biophysical variables , 2002 .