Experimental evaluation of acceleration waveform replication on electrohydraulic shaking tables

An electrohydraulic shaking table is an essential experimental facility in many industrial applications to real-time simulate actual vibration situations including structural vibration and earthquake. However, there is still a challenging area for its acceleration waveform replication because acceleration output responses of the electrohydraulic shaking table would not be as intended in magnitude and phase of an acceleration closed-loop system due to inherent hydraulic nonlinear dynamics of electrohydraulic servo systems. Thus, how to accurately and coordinately control parallel hydraulic actuators of the electrohydraulic shaking table is a critical issue; so, many control techniques have been developed to address the issue. Some currently used key techniques in this field are reviewed in the article, which are the objectives of academic investigations and industrial applications. The article reviews some new control algorithms for the electrohydraulic shaking table to obtain high-fidelity acceleration waveform replication accuracy.

[1]  Andrew Plummer,et al.  Control techniques for structural testing: A review , 2007 .

[2]  David P Stoten,et al.  The feedforward minimal control synthesis algorithm and its application to the control of shaking-tables , 2007 .

[3]  J. K. Goodfellow,et al.  Implementation of frequency domain adaptive control in vibration test products , 1997 .

[4]  Jorge Parrondo,et al.  Studies of the flow of air in a mixed-flow pump using numerical simulations , 2011 .

[5]  D. P. Stoten,et al.  Empirical studies of an MRAC algorithm with minimal controller synthesis , 1990 .

[6]  Zhengmao Ye,et al.  Tracking control of an electro-hydraulic shaking table system using a combined feedforward inverse model and adaptive inverse control for real-time testing , 2011 .

[7]  Tao Wang,et al.  Numerical characteristics of peer‐to‐peer (P2P) internet online hybrid test system and its application to seismic simulation of SRC structure , 2008 .

[8]  K. A. Edge,et al.  Adaptive control for a multi-axis hydraulic test rig , 2007 .

[9]  David J. Wagg,et al.  Control issues relating to real‐time substructuring experiments using a shaking table , 2005 .

[10]  Vasilis K. Dertimanis,et al.  On the acceleration‐based adaptive inverse control of shaking tables , 2015 .

[11]  G-C Luh,et al.  Inversion control of non-linear systems with an inverse NARX model identified using genetic algorithms , 2000 .

[12]  Marcos A. Underwood,et al.  Recent system developments for multi-actuator vibration control , 2001 .

[13]  Motohiro Kawafuku,et al.  Adaptive feedforward compensation for reaction force with nonlinear specimen in shaking tables , 2009, 2009 IEEE International Conference on Mechatronics.

[14]  Junwei Han,et al.  Amplitude phase control for electro-hydraulic servo system based on normalized least-mean-square adaptive filtering algorithm , 2011 .

[15]  Zongxia Jiao,et al.  Extended-State-Observer-Based Output Feedback Nonlinear Robust Control of Hydraulic Systems With Backstepping , 2014, IEEE Transactions on Industrial Electronics.

[16]  Gang Shen,et al.  Adaptive inverse control of time waveform replication for electrohydraulic shaking table , 2011 .

[17]  Jan Swevers,et al.  Multivariable feedback design to improve tracking performance on tractor vibration test rig , 2007 .

[18]  J Atkinson,et al.  Overcut in pulsed electrochemical grinding , 2000 .

[19]  J. Luco,et al.  Experimental characterization, modeling and identification of the NEES‐UCSD shake table mechanical system , 2008 .

[20]  Joel P. Conte,et al.  Linear dynamic modeling of a uni‐axial servo‐hydraulic shaking table system , 2000 .

[21]  Daniel Y. Abramovitch,et al.  Analysis and comparison of three discrete-time feedforward model-inverse control techniques for nonminimum-phase systems☆ , 2012 .

[22]  Han Yu,et al.  An overview of control schemes for hydraulic shaking tables , 2016 .

[23]  Goele Pipeleers,et al.  Optimal feedforward controller design for periodic inputs , 2010, Int. J. Control.

[24]  Mahnaz Hashemi,et al.  Adaptive control for a class of MIMO nonlinear time delay systems against time varying actuator failures. , 2015, ISA transactions.

[25]  Toshihiko Horiuchi,et al.  A new method for compensating actuator delay in real–time hybrid experiments , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  G. Shen,et al.  Implementation of electrohydraulic shaking table controllers with a combined adaptive inverse control and minimal control synthesis algorithm , 2011 .

[27]  Weidong Zhu,et al.  Force tracking control of an electro-hydraulic control loading system on a flight simulator using inverse model control and a damping compensator , 2018 .

[28]  Alexandru Onose,et al.  Greedy Sparse RLS , 2012, IEEE Transactions on Signal Processing.

[29]  Dennis R. Morgan,et al.  An analysis of multiple correlation cancellation loops with a filter in the auxiliary path , 1980, ICASSP.

[30]  Gang Shen,et al.  Feed-forward inverse control for transient waveform replication on electro-hydraulic shaking table , 2012 .

[31]  Motohiro Kawafuku,et al.  Adaptive Compensation for Reaction Force With Frequency Variation in Shaking Table Systems , 2009, IEEE Transactions on Industrial Electronics.

[32]  James M. Ricles,et al.  Stability analysis of SDOF real‐time hybrid testing systems with explicit integration algorithms and actuator delay , 2008 .

[33]  V. D. Papaefthimiou,et al.  Thermal performance analysis of a closed wet cooling tower , 2007 .

[34]  Hilton Abilio Grundling,et al.  Time domain sinusoidal acceleration controller for an electrodynamic shaker , 2008 .

[35]  Wei Xiong,et al.  Multi-input multi-output random vibration control of a multi-axis electro-hydraulic shaking table , 2015 .

[36]  Zhencai Zhu,et al.  Time waveform replication for electro-hydraulic shaking table incorporating off-line iterative learning control and modified internal model control , 2014, J. Syst. Control. Eng..

[37]  Philip Moore,et al.  A practical control strategy for servo-pneumatic actuator systems , 1999 .

[38]  Zhang Lei,et al.  Adaptive feed-forward compensation for hybrid control with acceleration time waveform replication on electro-hydraulic shaking table , 2013 .

[39]  Andrew Plummer,et al.  A Detailed Dynamic Model of a Six-Axis Shaking Table , 2008 .

[40]  Muhammad Shafiq Internal model control structure using adaptive inverse control strategy. , 2005 .

[41]  Ahmadul Ameen,et al.  A comparison of combustion characteristics of waste cooking oil with diesel as fuel in a direct injection diesel engine , 2002 .

[42]  Ming Peng,et al.  Characteristics of the landslide dams induced by the 2008 Wenchuan earthquake and dynamic behavior analysis using large-scale shaking table tests , 2015 .

[43]  Kyung-Won Min,et al.  Real-time substructuring technique for the shaking table test of upper substructures , 2007 .

[44]  Olga Kosheleva,et al.  Interval+communications=Walsh: for signal multiplexing under interval uncertainty, Walsh functions are optimal , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[45]  Shenghai Hu,et al.  Adaline neural network-based adaptive inverse control for an electro-hydraulic servo system , 2011 .

[46]  Liang Yan,et al.  High-Accuracy Tracking Control of Hydraulic Rotary Actuators With Modeling Uncertainties , 2014, IEEE/ASME Transactions on Mechatronics.

[47]  Lucy Y. Pao,et al.  Discrete-Time Exact and Approximate Dynamic Inversion for Settle Performance , 2008 .

[48]  Shuang Gao,et al.  Acceleration amplitude-phase regulation for electro-hydraulic servo shaking table based on LMS adaptive filtering algorithm , 2012, Int. J. Control.

[49]  Jian Zhao,et al.  NONLINEAR SYSTEM MODELING AND VELOCITY FEEDBACK COMPENSATION FOR EFFECTIVE FORCE TESTING , 2005 .

[50]  Shuang Gao,et al.  Sinusoidal acceleration harmonic estimation using the extended Kalman filter for an electro-hydraulic servo shaking table , 2015 .

[51]  Xiang Li,et al.  Improved feedforward inverse control with adaptive refinement for acceleration tracking of electro-hydraulic shake table , 2016 .

[52]  Zhao-Dong Xu,et al.  Horizontal shaking table tests on structures using innovative earthquake mitigation devices , 2009 .

[53]  Lucy Y. Pao,et al.  Nonminimum phase adaptive inverse control for settle performance applications , 2010 .

[54]  Igor Skrjanc,et al.  Feedforward control of a class of hybrid systems using an inverse model , 2011, Math. Comput. Simul..

[55]  Han Jun-wei,et al.  Harmonic cancellation for electro-hydraulic servo shaking table based on LMS adaptive algorithm , 2011 .

[56]  Dong-Ji Xuan,et al.  Design of a forced control system for a dynamic road simulator using QFT , 2008 .

[57]  Junwei Han,et al.  Attitude synchronous tracking control of double shaking tables based on hybrid fuzzy logic cross-coupled controller and adaptive inverse controller , 2015, J. Intell. Fuzzy Syst..

[58]  Lucy Y. Pao,et al.  Nonminimum Phase Dynamic Inversion for Settle Time Applications , 2009, IEEE Transactions on Control Systems Technology.

[59]  Michel Verhaegen,et al.  Off-line feed-forward and feedback control on a vibration rig , 2003 .

[60]  D. J. Xuan,et al.  Robust control application for a three-axis road simulator , 2011 .

[61]  Marcos A. Underwood,et al.  Rectangular Control of Multi-Shaker Systems: Theory and Practical Results , 2004 .

[62]  James M. Ricles,et al.  Experimental evaluation of an adaptive inverse compensation technique for real-time simulation of a large-scale magneto-rheological fluid damper , 2010 .

[63]  Bernard Widrow Adaptive inverse control , 1990, Defense, Security, and Sensing.

[64]  Junwei Han,et al.  Dynamic Coupling Analysis of a Spatial 6-DOF Electro-Hydraulic Parallel Manipulator Using a Modal Decoupling Method , 2013 .

[65]  W. K. Chan,et al.  A slip model for gas lubrication based on an effective viscosity concept , 2003 .

[66]  Sung-Kyung Lee,et al.  Real-time hybrid shaking table testing method for the performance evaluation of a tuned liquid damper controlling seismic response of building structures , 2007 .

[67]  Po-Ying Chen,et al.  Precision tracking control of a biaxial piezo stage using repetitive control and double-feedforward compensation , 2011 .

[68]  James M. Ricles,et al.  Improving the inverse compensation method for real‐time hybrid simulation through a dual compensation scheme , 2009 .

[69]  Andrew Plummer Model-based motion control for multi-axis servohydraulic shaking tables , 2016 .

[70]  Y. Namita,et al.  Real‐time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber , 1999 .

[71]  J A Ferreira,et al.  Semi-empirical model for a hydraulic servo-solenoid valve , 2002 .

[72]  Jeong Woo Han,et al.  Fatigue strength evaluation of a bogie frame for urban maglev train with fatigue test on full-scale test rig , 2013 .

[73]  William R. Saunders,et al.  Stability and operating constraints of adaptive LMS-based feedback control , 2003, Autom..

[74]  Weidong Zhu,et al.  Robust force control with a feed-forward inverse model controller for electro-hydraulic control loading systems of flight simulators , 2016 .

[75]  Junwei Han,et al.  Feel force control incorporating velocity feedforward and inverse model observer for control loading system of flight simulator , 2013, J. Syst. Control. Eng..

[76]  T. M. Hessburg,et al.  Feedforward control (based on model inversion) and system performance prediction using high-fidelity nonlinear dynamic hydraulic system modeling , 1997, Proceedings of the 1997 IEEE International Conference on Control Applications.

[77]  J. De Cuyper,et al.  State Space Modeling and Stable Dynamic Inversion for Trajectory Tracking on an Industrial Seat Test Rig , 2002 .

[78]  Jingfeng He,et al.  Modal control of a hydraulically driven redundant actuated fully parallel mechanism , 2017 .

[79]  Andrei M. Reinhorn,et al.  Compensation of actuator delay and dynamics for real‐time hybrid structural simulation , 2008 .

[80]  A. Kaelin,et al.  On the use of a priori knowledge in adaptive inverse control , 2000 .

[81]  Martin S. Williams,et al.  An overview of seismic hybrid testing of engineering structures , 2016 .

[82]  Qitao Huang,et al.  Adaptive inverse control of random vibration based on the filtered-X LMS algorithm , 2010 .

[83]  James M. Ricles,et al.  Large‐scale real‐time hybrid simulation involving multiple experimental substructures and adaptive actuator delay compensation , 2012 .

[84]  Amin Maghareh,et al.  Parametric identification of a servo-hydraulic actuator for real-time hybrid simulation , 2014 .

[85]  Simon A Neild,et al.  An Improved Substructuring Control Strategy based on the Adaptive Minimal Control Synthesis Control Algorithm , 2005 .

[86]  Filip De Coninck,et al.  Multi-axial random vibration testing: A six degrees-of-freedam test case , 2003 .

[87]  Andrew Plummer A general co-ordinate transformation framework for multi-axis motion control with applications in the testing industry , 2010 .

[88]  Zhencai Zhu,et al.  Real-time electro-hydraulic hybrid system for structural testing subjected to vibration and force loading , 2016 .

[89]  D. P. Stoten,et al.  Adaptive control of shaking tables using the minimal control synthesis algorithm , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[90]  James M. Ricles,et al.  Analysis of actuator delay compensation methods for real-time testing , 2009 .

[91]  D. Stoten,et al.  The error-based minimal control synthesis algorithm with integral action , 2003 .

[92]  Junwei Han,et al.  Modeling and controller design of a shaking table in an active structural control system , 2008 .

[93]  Xiaodong Ji,et al.  A substructure shaking table test for reproduction of earthquake responses of high‐rise buildings , 2009 .

[94]  R. T. Severn,et al.  The development of shaking tables–A historical note , 2011 .

[95]  Nariman Sepehri,et al.  Modeling and identification of electrohydraulic servos , 2000 .

[96]  Yasutaka Tagawa,et al.  Controller development for the E-Defense shaking table , 2007 .

[97]  Yuan-Jay Wang Characterization and quenching of friction-induced limit cycles of electro-hydraulic servovalve control systems with transport delay. , 2010, ISA transactions.

[98]  Bin Yao,et al.  Indirect Adaptive Robust Control of Hydraulic Manipulators With Accurate Parameter Estimates , 2011, IEEE Transactions on Control Systems Technology.

[99]  Kai Guo,et al.  Position tracking control of electro-hydraulic single-rod actuator based on an extended disturbance observer , 2015 .

[100]  Narutoshi Nakata,et al.  Direct Acceleration Feedback Control of Shake Tables with Force Stabilization , 2013 .

[101]  Wei Xiong,et al.  Adaptive random control of a two-axis redundantly actuated electro-hydraulic shaking table , 2016 .

[102]  Martin S. Williams,et al.  Numerical Modeling of a Servohydraulic Testing System for Structures , 2001 .

[103]  Jan Swevers,et al.  Experimental validation of different MIMO-feedback controller design methods , 2004 .

[104]  Marcos A. Underwood,et al.  Applying coordinate transformations to multi-DOF shaker control , 2006 .

[105]  Joel P. Conte,et al.  Acceleration Tracking Performance of the UCSD-NEES Shake Table , 2010 .

[106]  J. GEOFFREY CHASE*,et al.  NONLINEAR SHAKE TABLE IDENTIFICATION AND CONTROL FOR NEAR-FIELD EARTHQUAKE TESTING , 2005 .

[107]  Masayuki Fujita,et al.  Robust control of electrodynamic shaker with 2dof control using H∞ filter , 2009 .

[108]  Frieder Seible,et al.  SIMULATION ISSUES WITH A REAL-TIME, FULL-SCALE SEISMIC TESTING SYSTEM , 2002 .

[109]  Guangda Liu,et al.  Combined control strategy using internal model control and adaptive inverse control for electro-hydraulic shaking table , 2013 .

[110]  Barry W. Williams,et al.  Adaptive inverse control algorithm for shock testing , 2000 .