Matching chelators to radiometals for radiopharmaceuticals.

Radiometals comprise many useful radioactive isotopes of various metallic elements. When properly harnessed, these have valuable emission properties that can be used for diagnostic imaging techniques, such as single photon emission computed tomography (SPECT, e.g.(67)Ga, (99m)Tc, (111)In, (177)Lu) and positron emission tomography (PET, e.g.(68)Ga, (64)Cu, (44)Sc, (86)Y, (89)Zr), as well as therapeutic applications (e.g.(47)Sc, (114m)In, (177)Lu, (90)Y, (212/213)Bi, (212)Pb, (225)Ac, (186/188)Re). A fundamental critical component of a radiometal-based radiopharmaceutical is the chelator, the ligand system that binds the radiometal ion in a tight stable coordination complex so that it can be properly directed to a desirable molecular target in vivo. This article is a guide for selecting the optimal match between chelator and radiometal for use in these systems. The article briefly introduces a selection of relevant and high impact radiometals, and their potential utility to the fields of radiochemistry, nuclear medicine, and molecular imaging. A description of radiometal-based radiopharmaceuticals is provided, and several key design considerations are discussed. The experimental methods by which chelators are assessed for their suitability with a variety of radiometal ions is explained, and a large selection of the most common and most promising chelators are evaluated and discussed for their potential use with a variety of radiometals. Comprehensive tables have been assembled to provide a convenient and accessible overview of the field of radiometal chelating agents.

[1]  Jason S. Lewis,et al.  H6phospa-trastuzumab: bifunctional methylenephosphonate-based chelator with 89Zr, 111In and 177Lu. , 2014, Dalton transactions.

[2]  C. Smith,et al.  Synthesis of hexa aza cages, SarAr-NCS and AmBaSar and a study of their metal complexation, conjugation to nanomaterials and proteins for application in radioimaging and therapy. , 2013, Dalton transactions.

[3]  Jason S. Lewis,et al.  H(4)octapa-trastuzumab: versatile acyclic chelate system for 111In and 177Lu imaging and therapy. , 2013, Journal of the American Chemical Society.

[4]  Jung Young Kim,et al.  Non-cross-bridged tetraazamacrocyclic chelator for stable (64)cu-based radiopharmaceuticals. , 2013, ACS medicinal chemistry letters.

[5]  R. Weissleder,et al.  A Pretargeted PET Imaging Strategy Based on Bioorthogonal Diels–Alder Click Chemistry , 2013, The Journal of Nuclear Medicine.

[6]  A. Karlström,et al.  Influence of Macrocyclic Chelators on the Targeting Properties of 68Ga-Labeled Synthetic Affibody Molecules: Comparison with 111In-Labeled Counterparts , 2013, PloS one.

[7]  C. Anderson,et al.  Production and Purification of Metal Radionuclides for PET Imaging of Disease , 2013 .

[8]  M. Brechbiel,et al.  Preclinical evaluation of NETA-based bifunctional ligand for radioimmunotherapy applications using 212Bi and 213Bi: radiolabeling, serum stability, and biodistribution and tumor uptake studies. , 2013, Nuclear medicine and biology.

[9]  M. Brechbiel,et al.  Methodology for labeling proteins and peptides with lead-212 (212Pb). , 2013, Nuclear medicine and biology.

[10]  H. Kessler,et al.  A cyclen-based tetraphosphinate chelator for the preparation of radiolabeled tetrameric bioconjugates. , 2013, Chemistry.

[11]  E. Boros,et al.  Imaging Tumor Vasculature Noninvasively with Positron Emission Tomography and RGD Peptides Labeled with Copper 64 Using the Bifunctonal Chelates DOTA, Oxo-DO3A. and PCTA , 2013, Molecular imaging.

[12]  Jason S. Lewis,et al.  The Growing Impact of Bioorthogonal Click Chemistry on the Development of Radiopharmaceuticals , 2013, The Journal of Nuclear Medicine.

[13]  D. Yufit,et al.  Crystallographic and solution NMR structural analyses of four hexacoordinated gallium(III) complexes based on ligands derived from 6-amino-perhydro-1,4-diazepine. , 2013, Dalton transactions.

[14]  S. Nekolla,et al.  Comparison of cyclic RGD peptides for αvβ3 integrin detection in a rat model of myocardial infarction , 2013, EJNMMI Research.

[15]  C. Orvig,et al.  Tumour targeting with radiometals for diagnosis and therapy. , 2013, Chemical communications.

[16]  M. Brechbiel,et al.  212Pb-radioimmunotherapy potentiates paclitaxel-induced cell killing efficacy by perturbing the mitotic spindle checkpoint , 2013, British Journal of Cancer.

[17]  D. Parker,et al.  Conformational analysis and synthetic approaches to polydentate perhydro-diazepine ligands for the complexation of gallium(III). , 2013, Organic & biomolecular chemistry.

[18]  M. Brechbiel,et al.  Sensitization of tumor to ²¹²Pb radioimmunotherapy by gemcitabine involves initial abrogation of G2 arrest and blocked DNA damage repair by interference with Rad51. , 2013, International journal of radiation oncology, biology, physics.

[19]  Rebecca E. Sohn,et al.  Detection of Rapalog-Mediated Therapeutic Response in Renal Cancer Xenografts Using 64Cu-bevacizumab ImmunoPET , 2013, PloS one.

[20]  C. Anderson,et al.  Rapid and sensitive LC-MS approach to quantify non-radioactive transition metal impurities in metal radionuclides. , 2013, Chemical communications.

[21]  Heather M. Hennkens,et al.  Radiometals for combined imaging and therapy. , 2013, Chemical reviews.

[22]  D. Yufit,et al.  Structure and stability of hexadentate complexes of ligands based on AAZTA for efficient PET labelling with gallium-68. , 2013, Chemical communications.

[23]  S. Jalkanen,et al.  Nuclear imaging of inflammation: homing-associated molecules as targets , 2013, EJNMMI Research.

[24]  J. Šimeček,et al.  How is 68Ga Labeling of Macrocyclic Chelators Influenced by Metal Ion Contaminants in 68Ge/68Ga Generator Eluates? , 2013, ChemMedChem.

[25]  H. Wester,et al.  Be spoilt for choice with radiolabelled RGD peptides: preclinical evaluation of ⁶⁸Ga-TRAP(RGD)₃. , 2013, Nuclear medicine and biology.

[26]  Lynn C Francesconi,et al.  PET imaging with ⁸⁹Zr: from radiochemistry to the clinic. , 2013, Nuclear medicine and biology.

[27]  C. Decristoforo,et al.  [⁶⁸Ga]NS₃-RGD and [⁶⁸Ga] Oxo-DO3A-RGD for imaging α(v)β₃ integrin expression: synthesis, evaluation, and comparison. , 2013, Nuclear medicine and biology.

[28]  M. Piel,et al.  Imaging of Protein Synthesis: In Vitro and In Vivo Evaluation of 44Sc-DOTA-Puromycin , 2013, Molecular Imaging and Biology.

[29]  J. Šimeček,et al.  Copper-64 labelling of triazacyclononane-triphosphinate chelators. , 2012, Dalton transactions.

[30]  Jason S. Lewis,et al.  H(2)azapa: a versatile acyclic multifunctional chelator for (67)Ga, (64)Cu, (111)In, and (177)Lu. , 2012, Inorganic chemistry.

[31]  E. Boros,et al.  (68)Ga small peptide imaging: comparison of NOTA and PCTA. , 2012, Bioconjugate chemistry.

[32]  Hyun A. Song,et al.  Synthesis and preclinical evaluation of bifunctional ligands for improved chelation chemistry of 90Y and 177Lu for targeted radioimmunotherapy. , 2012, Bioconjugate chemistry.

[33]  K. Lyczko,et al.  Search of ligands suitable for 212Pb/212Bi in vivo generators , 2012, Journal of Radioanalytical and Nuclear Chemistry.

[34]  A. Bilewicz,et al.  Stability of 47Sc-complexes with acyclic polyamino-polycarboxylate ligands , 2012, Journal of Radioanalytical and Nuclear Chemistry.

[35]  J. Šimeček,et al.  A Monoreactive Bifunctional Triazacyclononane Phosphinate Chelator with High Selectivity for Gallium‐68 , 2012, ChemMedChem.

[36]  E. Boros,et al.  RGD conjugates of the H2dedpa scaffold: synthesis, labeling and imaging with 68Ga. , 2012, Nuclear medicine and biology.

[37]  M. Bartholomä Recent developments in the design of bifunctional chelators for metal-based radiopharmaceuticals used in Positron Emission Tomography , 2012 .

[38]  F. Brunotte,et al.  DOTAGA-anhydride: a valuable building block for the preparation of DOTA-like chelating agents. , 2012, Chemistry.

[39]  E. Krenning,et al.  [111In-DOTA]Somatostatin-14 analogs as potential pansomatostatin-like radiotracers - first results of a preclinical study , 2012, EJNMMI Research.

[40]  M. Cooper,et al.  Comparison of (64)Cu-complexing bifunctional chelators for radioimmunoconjugation: labeling efficiency, specific activity, and in vitro/in vivo stability. , 2012, Bioconjugate chemistry.

[41]  E. Boros,et al.  Evaluation of the H2)dedpa scaffold and its cRGDyK conjugates for labeling with 64Cu. , 2012, Inorganic chemistry.

[42]  E. Boros,et al.  H4octapa: an acyclic chelator for 111In radiopharmaceuticals. , 2012, Journal of the American Chemical Society.

[43]  R. Baum,et al.  THERANOSTICS: From Molecular Imaging Using Ga-68 Labeled Tracers and PET/CT to Personalized Radionuclide Therapy - The Bad Berka Experience , 2012, Theranostics.

[44]  R. Weissleder,et al.  Imaging therapeutic PARP inhibition in vivo through bioorthogonally developed companion imaging agents. , 2012, Neoplasia.

[45]  Lihui Wei,et al.  Synthesis, Cu(II) complexation, 64Cu-labeling and biological evaluation of cross-bridged cyclam chelators with phosphonate pendant arms. , 2012, Dalton transactions.

[46]  R. Weissleder,et al.  Bioorthogonal reaction pairs enable simultaneous, selective, multi-target imaging. , 2012, Angewandte Chemie.

[47]  R. Boellaard,et al.  Reproducibility of quantitative (R)-[11C]verapamil studies , 2012, EJNMMI Research.

[48]  J. Šimeček,et al.  Complexation of metal ions with TRAP (1,4,7-triazacyclononane phosphinic acid) ligands and 1,4,7-triazacyclononane-1,4,7-triacetic acid: phosphinate-containing ligands as unique chelators for trivalent gallium. , 2012, Inorganic chemistry.

[49]  B. Rogers,et al.  89Zr-Radiolabeled Trastuzumab Imaging in Orthotopic and Metastatic Breast Tumors , 2012, Pharmaceuticals.

[50]  J. Šimeček,et al.  TRAP, a powerful and versatile framework for gallium-68 radiopharmaceuticals. , 2011, Chemistry.

[51]  Yin Zhang,et al.  Positron Emission Tomography Imaging of CD105 Expression with a 64Cu-Labeled Monoclonal Antibody: NOTA Is Superior to DOTA , 2011, PloS one.

[52]  Eszter Boros,et al.  New Ga derivatives of the H2dedpa scaffold with improved clearance and persistent heart uptake. , 2011, Nuclear medicine and biology.

[53]  R. Weissleder,et al.  Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. , 2011, Bioconjugate chemistry.

[54]  Arthur E. Martell,et al.  Critical Stability Constants , 2011 .

[55]  Hiroyuki Kasahara,et al.  Synthesis and evaluation of a novel 68Ga-chelate-conjugated bisphosphonate as a bone-seeking agent for PET imaging. , 2011, Nuclear medicine and biology.

[56]  É. Tóth,et al.  Kinetics of Ga(NOTA) formation from weak Ga-citrate complexes. , 2011, Inorganic chemistry.

[57]  P. Conti,et al.  Efficient preparation and biological evaluation of a novel multivalency bifunctional chelator for 64Cu radiopharmaceuticals. , 2011, Chemistry.

[58]  R. Weissleder,et al.  Modular Strategy for the Construction of Radiometalated Antibodies for Positron Emission Tomography Based on Inverse Electron Demand Diels–Alder Click Chemistry , 2011, Bioconjugate chemistry.

[59]  Theresa M Reineke,et al.  Theranostics: combining imaging and therapy. , 2011, Bioconjugate chemistry.

[60]  W. Weber,et al.  Novel 64Cu- and 68Ga-Labeled RGD Conjugates Show Improved PET Imaging of ανβ3 Integrin Expression and Facile Radiosynthesis , 2011, The Journal of Nuclear Medicine.

[61]  F. Bénard,et al.  Evaluation of 64Cu-labeled bifunctional chelate-bombesin conjugates. , 2011, Bioconjugate chemistry.

[62]  E. Krenning,et al.  (68)Ga-labeled DOTA-peptides and (68)Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. , 2011, Seminars in nuclear medicine.

[63]  Wolfgang A Weber,et al.  PET of Somatostatin Receptor–Positive Tumors Using 64Cu- and 68Ga-Somatostatin Antagonists: The Chelate Makes the Difference , 2011, The Journal of Nuclear Medicine.

[64]  Jason S. Lewis,et al.  The next generation of positron emission tomography radiopharmaceuticals in oncology. , 2011, Seminars in nuclear medicine.

[65]  R. Tavaré,et al.  Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands. , 2011, Chemical communications.

[66]  P. Zinzani,et al.  Radioimmunotherapy with 90Y-ibritumomab tiuxetan is a safe and efficient treatment for patients with B-cell lymphoma relapsed after auto-SCT: an analysis of the international RIT-Network , 2011, Bone Marrow Transplantation.

[67]  M. Brechbiel,et al.  Towards translation of 212Pb as a clinical therapeutic; getting the lead in! , 2011, Dalton transactions.

[68]  J. Correia,et al.  Radiometallated peptides for molecular imaging and targeted therapy. , 2011, Dalton transactions.

[69]  Jason S. Lewis,et al.  A practical guide to the construction of radiometallated bioconjugates for positron emission tomography. , 2011, Dalton transactions.

[70]  F. Rösch,et al.  Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. , 2011, Dalton transactions.

[71]  M. Brechbiel,et al.  Efficient bifunctional decadentate ligand 3p-C-DEPA for targeted α-radioimmunotherapy applications. , 2011, Bioconjugate chemistry.

[72]  V. Tolmachev,et al.  Imaging agents for in vivo molecular profiling of disseminated prostate cancer: Cellular processing of [(111)In]-labeled CHX-A″DTPA-trastuzumab and anti-HER2 ABY-025 Affibody in prostate cancer cell lines. , 2011, Experimental and therapeutic medicine.

[73]  Thien Le,et al.  A highly effective bifunctional ligand for radioimmunotherapy applications. , 2011, Chemical communications.

[74]  P. Choyke,et al.  68Ga-DOTA-Affibody molecule for in vivo assessment of HER2/neu expression with PET , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[75]  Jason S. Lewis,et al.  Magnitude of Enhanced Permeability and Retention Effect in Tumors with Different Phenotypes: 89Zr-Albumin as a Model System , 2011, Journal of Nuclear Medicine.

[76]  T. Nayak,et al.  HER1-Targeted 86Y-Panitumumab Possesses Superior Targeting Characteristics than 86Y-Cetuximab for PET Imaging of Human Malignant Mesothelioma Tumors Xenografts , 2011, PloS one.

[77]  S. Walrand,et al.  Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging? , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[78]  S. Achilefu,et al.  In Vitro and In Vivo Evaluation of 64Cu-Labeled SarAr-Bombesin Analogs in Gastrin-Releasing Peptide Receptor–Expressing Prostate Cancer , 2011, The Journal of Nuclear Medicine.

[79]  R. Weissleder,et al.  In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation , 2011, Nature Medicine.

[80]  T. Nayak,et al.  PET imaging of tumor angiogenesis in mice with VEGF‐A–targeted 86Y‐CHX‐A″‐DTPA‐bevacizumab , 2011, International journal of cancer.

[81]  J. Humm,et al.  Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody , 2011, Physics in medicine and biology.

[82]  A. Majkowska-Pilip,et al.  Macrocyclic complexes of scandium radionuclides as precursors for diagnostic and therapeutic radiopharmaceuticals. , 2011, Journal of inorganic biochemistry.

[83]  J. Reubi,et al.  Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). , 2011, Cancer research.

[84]  R. Weissleder,et al.  Synthesis and in vivo imaging of a 18F-labeled PARP1 inhibitor using a chemically orthogonal scavenger-assisted high-performance method. , 2011, Angewandte Chemie.

[85]  Yin Zhang,et al.  Positron emission tomography imaging of CD105 expression with 89Zr-Df-TRC105 , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[86]  É. Tóth,et al.  Gallium(III) complexes of DOTA and DOTA-monoamide: kinetic and thermodynamic studies. , 2010, Inorganic chemistry.

[87]  Brian O Patrick,et al.  Acyclic chelate with ideal properties for (68)Ga PET imaging agent elaboration. , 2010, Journal of the American Chemical Society.

[88]  D. Bigner,et al.  Anti-EGFRvIII monoclonal antibody armed with 177Lu: in vivo comparison of macrocyclic and acyclic ligands. , 2010, Nuclear medicine and biology.

[89]  P. Conti,et al.  Radiopharmaceutical chemistry for positron emission tomography. , 2010, Advanced drug delivery reviews.

[90]  A. Fuchs,et al.  Evaluation of radioisotope quality aspects for preparation of high specific activity [Ga-68]-NOTA-AnnexinA1 , 2010 .

[91]  S. Larson,et al.  89Zr-DFO-J591 for ImmunoPET of Prostate-Specific Membrane Antigen Expression In Vivo , 2010, The Journal of Nuclear Medicine.

[92]  M. Poirot,et al.  Development of a new radioligand for cholecystokinin receptor subtype 2 scintigraphy: from molecular modeling to in vivo evaluation. , 2010, Bioorganic & medicinal chemistry.

[93]  H. Rajabi,et al.  Synthesis and biodistribution studiesof 177Lu-trastuzumab as a therapeutic agent in the breast cancer mice model , 2010 .

[94]  F. Rösch,et al.  A triazacyclononane-based bifunctional phosphinate ligand for the preparation of multimeric 68Ga tracers for positron emission tomography. , 2010, Chemistry.

[95]  T. Nayak,et al.  Preparation, Biological Evaluation, and Pharmacokinetics of the Human Anti-HER1 Monoclonal Antibody Panitumumab Labeled with 86Y for Quantitative PET of Carcinoma , 2010, Journal of Nuclear Medicine.

[96]  G. Cheon,et al.  Revival of TE2A; a better chelate for Cu(II) ions than TETA? , 2010, Chemical communications.

[97]  C. Anderson,et al.  Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. , 2010, Chemical reviews.

[98]  U. Haberkorn,et al.  ScVEGF-PEG-HBED-CC and scVEGF-PEG-NOTA conjugates: comparison of easy-to-label recombinant proteins for [68Ga]PET imaging of VEGF receptors in angiogenic vasculature. , 2010, Nuclear medicine and biology.

[99]  J. Zubieta,et al.  Technetium and gallium derived radiopharmaceuticals: comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. , 2010, Chemical reviews.

[100]  Fan Wang,et al.  Evaluation of 111In-labeled cyclic RGD peptides: tetrameric not tetravalent. , 2010, Bioconjugate chemistry.

[101]  Judith E. Flores,et al.  Site-specifically 89Zr-labeled monoclonal antibodies for ImmunoPET. , 2010, Nuclear medicine and biology.

[102]  P. Jurek,et al.  Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine , 2010, Nature Protocols.

[103]  F. Wuest,et al.  Iodine-124: A Promising Positron Emitter for Organic PET Chemistry , 2010, Molecules.

[104]  Yin Duan,et al.  Evaluation of bifunctional chelates for the development of gallium-based radiopharmaceuticals. , 2010, Bioconjugate chemistry.

[105]  A. Merlo,et al.  Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]-substance P: a pilot trial , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[106]  C. Anderson,et al.  A new phosphonate pendant-armed cross-bridged tetraamine chelator accelerates copper(ii) binding for radiopharmaceutical applications. , 2010, Dalton transactions.

[107]  Valerie A Longo,et al.  Measuring the Pharmacodynamic Effects of a Novel Hsp90 Inhibitor on HER2/neu Expression in Mice Using 89Zr-DFO-Trastuzumab , 2010, PloS one.

[108]  Jason S. Lewis,et al.  Unconventional Nuclides for Radiopharmaceuticals , 2010, Molecular imaging.

[109]  F. Rösch,et al.  A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals , 2010 .

[110]  S. Hosseinimehr,et al.  Preparation and in vitro evaluation of 111In-CHX-A"-DTPA-labeled anti-VEGF monoclonal antibody bevacizumab. , 2010, Human antibodies.

[111]  T. Nayak,et al.  PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A″-DTPA-cetuximab , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[112]  C. Platas‐Iglesias,et al.  Selective chelation of Cd(II) and Pb(II) versus Ca(II) and Zn(II) by using octadentate ligands containing pyridinecarboxylate and pyridyl pendants. , 2009, Inorganic chemistry.

[113]  Ravy K. Vajravelu,et al.  Radioimmunotherapy of breast cancer metastases with alpha-particle emitter 225Ac: comparing efficacy with 213Bi and 90Y. , 2009, Cancer research.

[114]  C. Platas‐Iglesias,et al.  Eight-coordinate Zn(II), Cd(II), and Pb(II) complexes based on a 1,7-diaza-12-crown-4 platform endowed with a remarkable selectivity over Ca(II). , 2009, Inorganic chemistry.

[115]  Jason S. Lewis,et al.  Standardized methods for the production of high specific-activity zirconium-89. , 2009, Nuclear medicine and biology.

[116]  G. V. van Dongen,et al.  p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[117]  M. Glaser,et al.  ‘Click labelling’ in PET radiochemistry , 2009 .

[118]  Johan R de Jong,et al.  Development and Characterization of Clinical-Grade 89Zr-Trastuzumab for HER2/neu ImmunoPET Imaging , 2009, Journal of Nuclear Medicine.

[119]  H. Lundqvist,et al.  The influence of Bz-DOTA and CHX-A″-DTPA on the biodistribution of ABD-fused anti-HER2 Affibody molecules: implications for 114mIn-mediated targeting therapy , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[120]  M. Brechbiel,et al.  Melanoma imaging using (111)In-, (86)Y- and (68)Ga-labeled CHX-A''-Re(Arg11)CCMSH. , 2009, Nuclear medicine and biology.

[121]  S. Achilefu,et al.  (64)Cu-labeled CB-TE2A and diamsar-conjugated RGD peptide analogs for targeting angiogenesis: comparison of their biological activity. , 2009, Nuclear medicine and biology.

[122]  S. Gambhir,et al.  Engineered knottin peptides: a new class of agents for imaging integrin expression in living subjects. , 2009, Cancer research.

[123]  J. Sutcliffe,et al.  Evaluation of [64Cu]Cu-DOTA and [64Cu]Cu-CB-TE2A Chelates for Targeted Positron Emission Tomography with an αvβ6-Specific Peptide , 2009 .

[124]  Tara Heitner,et al.  In Vivo Biodistribution, PET Imaging, and Tumor Accumulation of 86Y- and 111In-Antimindin/RG-1, Engineered Antibody Fragments in LNCaP Tumor–Bearing Nude Mice , 2009, Journal of Nuclear Medicine.

[125]  É. Tóth,et al.  Macrocyclic receptor exhibiting unprecedented selectivity for light lanthanides. , 2009, Journal of the American Chemical Society.

[126]  A. Sherry,et al.  (S)-5-(p-nitrobenzyl)-PCTA, a promising bifunctional ligand with advantageous metal ion complexation kinetics. , 2009, Bioconjugate chemistry.

[127]  S. Aime,et al.  Equilibrium and kinetic properties of the lanthanoids(III) and various divalent metal complexes of the heptadentate ligand AAZTA. , 2009, Chemistry.

[128]  J. Steinbach,et al.  Hexadentate bispidine derivatives as versatile bifunctional chelate agents for copper(II) radioisotopes. , 2009, Bioconjugate chemistry.

[129]  David E Reichert,et al.  Synthesis and characterization of the copper(II) complexes of new N2S2-donor macrocyclic ligands: synthesis and in vivo evaluation of the (64)Cu complexes. , 2009, Dalton transactions.

[130]  C. Platas‐Iglesias,et al.  Anion Coordination Effect on the Nuclearity of CoII, NiII, CuII, and ZnII Complexes with a Benzimidazole Pendant‐Armed Crown , 2009 .

[131]  M. Green,et al.  Synthesis and biodistribution of lipophilic and monocationic gallium radiopharmaceuticals derived from N,N'-bis(3-aminopropyl)-N,N'-dimethylethylenediamine: potential agents for PET myocardial imaging with 68Ga. , 2009, Nuclear medicine and biology.

[132]  Sandra Geyser-Stoops,et al.  Tumor-targeted HPMA copolymer-(RGDfK)-(CHX-A''-DTPA) conjugates show increased kidney accumulation. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[133]  David Esteban-Gómez,et al.  Zn(ii), Cd(ii) and Pb(ii) complexation with pyridinecarboxylate containing ligands. , 2008, Dalton transactions.

[134]  M. Gleave,et al.  Evaluation of novel bifunctional chelates for the development of Cu-64-based radiopharmaceuticals. , 2008, Nuclear medicine and biology.

[135]  Shuang Liu Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. , 2008, Advanced drug delivery reviews.

[136]  É. Tóth,et al.  Lanthanide complexes based on a 1,7-diaza-12-crown-4 platform containing picolinate pendants: a new structural entry for the design of magnetic resonance imaging contrast agents. , 2008, Inorganic chemistry.

[137]  R. Schibli,et al.  "Click-to-chelate": design and incorporation of triazole-containing metal-chelating systems into biomolecules of diagnostic and therapeutic interest. , 2008, Chemistry.

[138]  M. Brechbiel,et al.  Synthesis of a cross-bridged cyclam derivative for peptide conjugation and 64Cu radiolabeling. , 2008, Bioconjugate chemistry.

[139]  M. Brechbiel,et al.  Novel bimodal bifunctional ligands for radioimmunotherapy and targeted MRI. , 2008, Bioconjugate chemistry.

[140]  Xiang Ma,et al.  Efficient synthesis and evaluation of bimodal ligand NETA. , 2008, Bioorganic & medicinal chemistry letters.

[141]  M. Brechbiel Bifunctional chelates for metal nuclides. , 2008, The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of....

[142]  U. Haberkorn,et al.  Tetrafluorophenolate of HBED-CC: a versatile conjugation agent for 68Ga-labeled small recombinant antibodies , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[143]  C. Decristoforo,et al.  68Ga- and 111In-labelled DOTA-RGD peptides for imaging of αvβ3 integrin expression , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[144]  Hyun-soon Chong,et al.  Synthesis and evaluation of novel polyaminocarboxylate-based antitumor agents. , 2008, Journal of medicinal chemistry.

[145]  H. Maecke,et al.  68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. , 2008, Contrast media & molecular imaging.

[146]  B. Långström,et al.  Convenient preparation of 68Ga-based PET-radiopharmaceuticals at room temperature. , 2008, Bioconjugate chemistry.

[147]  Qaim Sm,et al.  Decay data and production yields of some non-standard positron emitters used in PET , 2008 .

[148]  Paul J Yazaki,et al.  A versatile bifunctional chelate for radiolabeling humanized anti-CEA antibody with In-111 and Cu-64 at either thiol or amino groups: PET imaging of CEA-positive tumors with whole antibodies. , 2008, Bioconjugate chemistry.

[149]  G. V. van Dongen,et al.  Immuno-PET: a navigator in monoclonal antibody development and applications. , 2007, The oncologist.

[150]  Jason S. Lewis,et al.  Gallium-68-labeled DOTA-rhenium-cyclized alpha-melanocyte-stimulating hormone analog for imaging of malignant melanoma. , 2007, Nuclear medicine and biology.

[151]  M. Brechbiel,et al.  Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. , 2007, Nuclear medicine and biology.

[152]  Timothy J. Hoffman,et al.  In Vivo Evaluation and Small-Animal PET/CT of a Prostate Cancer Mouse Model Using 64Cu Bombesin Analogs: Side-by-Side Comparison of the CB-TE2A and DOTA Chelation Systems , 2007, Journal of Nuclear Medicine.

[153]  Peter Hohenberger,et al.  68Ga-Labeled Bombesin Studies in Patients with Gastrointestinal Stromal Tumors: Comparison with 18F-FDG , 2007, Journal of Nuclear Medicine.

[154]  R. Laforest,et al.  Nuclear Uptake and Dosimetry of 64Cu-Labeled Chelator–Somatostatin Conjugates in an SSTr2-Transfected Human Tumor Cell Line , 2007, Journal of Nuclear Medicine.

[155]  H. Hollema,et al.  In Vivo VEGF Imaging with Radiolabeled Bevacizumab in a Human Ovarian Tumor Xenograft , 2007, Journal of Nuclear Medicine.

[156]  C. Anderson,et al.  Synthesis, characterization and in vivo studies of Cu(II)-64-labeled cross-bridged tetraazamacrocycle-amide complexes as models of peptide conjugate imaging agents. , 2007, Journal of medicinal chemistry.

[157]  R. Bale,et al.  68Ga-DOTA-Tyr3-Octreotide PET in Neuroendocrine Tumors: Comparison with Somatostatin Receptor Scintigraphy and CT , 2007, Journal of Nuclear Medicine.

[158]  Jason S. Lewis,et al.  Molecular imaging of gastrin-releasing peptide receptor-positive tumors in mice using 64Cu- and 86Y-DOTA-(Pro1,Tyr4)-bombesin(1-14). , 2007, Bioconjugate chemistry.

[159]  F. Havas,et al.  A convenient synthesis of 6,6′-dimethyl-2,2′-bipyridine-4-ester and its application to the preparation of bifunctional lanthanide chelators , 2007 .

[160]  C. Anderson,et al.  Copper chelation chemistry and its role in copper radiopharmaceuticals. , 2007, Current pharmaceutical design.

[161]  É. Tóth,et al.  Pyridine and phosphonate containing ligands for stable lanthanide complexation. An experimental and theoretical study to assess the solution structure. , 2006, Dalton transactions.

[162]  M. Welch,et al.  Radiochemistry and radiopharmaceuticals , 2006 .

[163]  Joop A. Peters,et al.  Pyridine- and phosphonate-containing ligands for stable Ln complexation. Extremely fast water exchange on the Gd(III) chelates. , 2006, Inorganic chemistry.

[164]  N. Di Bartolo,et al.  New 64Cu PET imaging agents for personalised medicine and drug development using the hexa-aza cage, SarAr. , 2006, Organic & biomolecular chemistry.

[165]  O. Visser,et al.  Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[166]  M. Brechbiel,et al.  Validation of a novel CHX-A'' derivative suitable for peptide conjugation: small animal PET/CT imaging using yttrium-86-CHX-A''-octreotide. , 2006, Journal of medicinal chemistry.

[167]  M. Brechbiel,et al.  In vitro and in vivo evaluation of novel ligands for radioimmunotherapy. , 2006, Nuclear medicine and biology.

[168]  R. Boellaard,et al.  Performance of Immuno–Positron Emission Tomography with Zirconium-89-Labeled Chimeric Monoclonal Antibody U36 in the Detection of Lymph Node Metastases in Head and Neck Cancer Patients , 2006, Clinical Cancer Research.

[169]  T. Nayak,et al.  213Bi-[DOTA0, Tyr3]Octreotide Peptide Receptor Radionuclide Therapy of Pancreatic Tumors in a Preclinical Animal Model , 2006, Clinical Cancer Research.

[170]  L. Zakharov,et al.  Kinetic Inertness and Electrochemical Behavior of Copper(II) Tetraazamacrocyclic Complexes: Possible Implications for in Vivo Stability , 2005 .

[171]  M. Bergström,et al.  Preparation and evaluation of (68)Ga-DOTA-hEGF for visualisation of EGFR expression in malignant tumours , 2005 .

[172]  C. R. Leemans,et al.  (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[173]  A. Scott,et al.  Enhanced Efficacy of Radioimmunotherapy with 90Y-CHX-A″-DTPA-hu3S193 by Inhibition of Epidermal Growth Factor Receptor (EGFR) Signaling with EGFR Tyrosine Kinase Inhibitor AG1478 , 2005, Clinical Cancer Research.

[174]  Joop A. Peters,et al.  The highest water exchange rate ever measured for a Gd(III) chelate. , 2005, Chemical communications.

[175]  D. Goldenberg,et al.  Radioimmunotherapy of non-Hodgkin’s lymphoma: a critical appraisal , 2005, Expert review of clinical immunology.

[176]  Michael J. Welch,et al.  Imaging of Melanoma Using 64Cu− and 86Y−DOTA−ReCCMSH(Arg11), a Cyclized Peptide Analogue of α-MSH , 2005 .

[177]  Charles J. Smith,et al.  Radiometallation of receptor-specific peptides for diagnosis and treatment of human cancer. , 2005, In vivo.

[178]  U. Haberkorn,et al.  Conjugation of DOTA using isolated phenolic active esters: the labeling and biodistribution of albumin as blood pool marker. , 2005, Bioconjugate chemistry.

[179]  J. Bart,et al.  Preclinical characterisation of 111In‐DTPA‐trastuzumab , 2004, British journal of pharmacology.

[180]  L. Zakharov,et al.  Structural and Dynamic Studies of Zinc, Gallium, and Cadmium Complexes of a Dicarboxylate Pendant-Armed Cross-Bridged Cyclen , 2004 .

[181]  Joop A. Peters,et al.  Lanthanide chelates containing pyridine units with potential application as contrast agents in magnetic resonance imaging. , 2004, Chemistry.

[182]  W. Oyen,et al.  Biodistribution and therapeutic efficacy of (125/131)I-, (186)Re-, (88/90)Y-, or (177)Lu-labeled monoclonal antibody MN-14 to carcinoembryonic antigen in mice with small peritoneal metastases of colorectal origin. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[183]  D. Scheinberg,et al.  Alpha-Particle Emitting Atomic Generator (Actinium-225)-Labeled Trastuzumab (Herceptin) Targeting of Breast Cancer Spheroids , 2004, Clinical Cancer Research.

[184]  Weijun Niu,et al.  Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. , 2004, Journal of medicinal chemistry.

[185]  I. Pastan,et al.  Comparative biodistribution of indium- and yttrium-labeled B3 monoclonal antibody conjugated to either 2-(p-SCN-Bz)-6-methyl-DTPA (1 B4M-DTPA) or 2-(p-SCN-Bz)-1,4,7,10-tetraazacyclododecane tetraacetic acid (2B-DOTA) , 1994, European Journal of Nuclear Medicine.

[186]  D. Scheinberg,et al.  Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[187]  S. Kojima,et al.  Comparisons of labeling efficiency, biological activity and biodistribution among 125I-, 67Ga-DTPA-and 67Ga-DFO-lectins , 2004, European Journal of Nuclear Medicine.

[188]  P. Fanwick,et al.  Synthesis, characterization, and X-ray crystal structure of In(DOTA-AA) (AA = p-aminoanilide): a model for 111In-labeled DOTA-biomolecule conjugates. , 2003, Inorganic chemistry.

[189]  L. Chappell,et al.  Synthesis and evaluation of novel bifunctional chelating agents based on 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid for radiolabeling proteins. , 2003, Nuclear medicine and biology.

[190]  R. Boellaard,et al.  89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[191]  George Sgouros,et al.  Pharmacokinetics and Biodistribution of (86)Y-Trastuzumab for (90)Y dosimetry in an ovarian carcinoma model: correlative MicroPET and MRI. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[192]  M. Brechbiel,et al.  Labeling anti-HER2/neu monoclonal antibodies with 111In and 90Y using a bifunctional DTPA chelating agent. , 2003, Cancer biotherapy & radiopharmaceuticals.

[193]  Marion de Jong,et al.  Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities , 2003, European Journal of Nuclear Medicine and Molecular Imaging.

[194]  H. Vinšová,et al.  Isotachophoretic determination of stability constants of Ho and Y complexes with diethylenetriaminepentaacetic acid and 1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid. , 2003, Journal of chromatography. A.

[195]  V. Torchilin Contrast Agents II: Optical, Ultrasound, X-ray and Radiopharmaceutical Imaging. Topics in Current Chemistry. Volume 222 Edited by Werner Krause (Schering AG, Berlin). Springer-Verlag: Berlin, Heidelberg, New York. 2002. x + 292 pp. $199.00. ISBN 3-540-43451-8. , 2003 .

[196]  J. Fichna,et al.  Synthesis of target-specific radiolabeled peptides for diagnostic imaging. , 2003, Bioconjugate chemistry.

[197]  D. Scheinberg,et al.  Design and synthesis of 225Ac radioimmunopharmaceuticals. , 2002, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[198]  M. Brechbiel,et al.  Synthesis and biological evaluation of novel macrocyclic ligands with pendent donor groups as potential yttrium chelators for radioimmunotherapy with improved complex formation kinetics. , 2002, Journal of medicinal chemistry.

[199]  Shuang Liu,et al.  Comparison of yttrium and indium complexes of DOTA-BA and DOTA-MBA: models for (90)Y- and (111)In-labeled DOTA-biomolecule conjugates. , 2002, Bioconjugate chemistry.

[200]  L. Messori,et al.  A comparative study of aluminum(III), gallium(III), indium(III), and thallium(III) binding to human serum transferrin , 2002 .

[201]  L. Chappell,et al.  In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with 177Lu for radioimmunotherapeutic applications. , 2002, Nuclear medicine and biology.

[202]  J. Reubi,et al.  NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. , 2002, Bioconjugate chemistry.

[203]  L. Gordon,et al.  Yttrium 90 ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory low-grade non-Hodgkin's lymphoma. , 2002, Seminars in oncology.

[204]  M. Wuest,et al.  Radiolabeling and in vivo behavior of copper-64-labeled cross-bridged cyclam ligands. , 2002, Journal of medicinal chemistry.

[205]  M. Brechbiel,et al.  Novel chelating agents for potential clinical applications of copper. , 2002, Nuclear medicine and biology.

[206]  M. Brechbiel,et al.  Synthesis of novel 1,3,5- cis , cis -triaminocyclohexane ligand based Cu(II) complexes as potential radiopharmaceuticals and correlation of structure and serum stability , 2001 .

[207]  T. Buettner,et al.  Conjugation of monoclonal antibodies with TETA using activated esters: biological comparison of 64Cu-TETA-1A3 with 64Cu-BAT-2IT-1A3. , 2001, Cancer biotherapy & radiopharmaceuticals.

[208]  P. Schöffski,et al.  Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data , 2001, European Journal of Nuclear Medicine.

[209]  S. Liu,et al.  Synthesis and characterization of two (111)In-labeled DTPA-peptide conjugates. , 2001, Bioconjugate chemistry.

[210]  M. Brechbiel,et al.  The development of the alpha-particle emitting radionuclides 212Bi and 213Bi, and their decay chain related radionuclides, for therapeutic applications. , 2001, Chemical reviews.

[211]  I. Pastan,et al.  Synthesis and evaluation of a macrocyclic bifunctional chelating agent for use with bismuth radionuclides. , 2001, Nuclear medicine and biology.

[212]  A. Magener,et al.  Immunoscintigraphy with positron emission tomography: gallium-68 chelate imaging of breast cancer pretargeted with bispecific anti-MUC1/anti-Ga chelate antibodies. , 2001, Cancer research.

[213]  S. Mirzadeh,et al.  In vivo evaluation of bismuth-labeled monoclonal antibody comparing DTPA-derived bifunctional chelates. , 2001, Cancer biotherapy & radiopharmaceuticals.

[214]  R Laforest,et al.  64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[215]  S. Jurisson,et al.  Development of an in vitro model for assessing the in vivo stability of lanthanide chelates. , 2001, Nuclear medicine and biology.

[216]  M Schwaiger,et al.  Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[217]  A. Sargeson,et al.  Synthesis of a new cage ligand, SarAr, and its complexation with selected transition metal ions for potential use in radioimaging , 2001 .

[218]  Shuang Liu,et al.  Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. , 2001, Bioconjugate chemistry.

[219]  H. Mäcke,et al.  A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. , 2000, Bioorganic & medicinal chemistry letters.

[220]  L. Chappell,et al.  Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for (225)Ac radioimmunotherapy applications. , 2000, Bioconjugate chemistry.

[221]  M. Welch,et al.  In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. , 2000, Bioconjugate chemistry.

[222]  S. Kennel,et al.  Evaluation of 225Ac for vascular targeted radioimmunotherapy of lung tumors. , 2000, Cancer biotherapy & radiopharmaceuticals.

[223]  M. Welch,et al.  Novel gallium(III) complexes transported by MDR1 P-glycoprotein: potential PET imaging agents for probing P-glycoprotein-mediated transport activity in vivo. , 2000, Chemistry & biology.

[224]  L. Chappell,et al.  Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. , 2000, Nuclear medicine and biology.

[225]  M. Mayo,et al.  Improved synthesis of the bifunctional chelating agent 1,4,7,10-tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N',N'',N'''-tri s(acetic acid)cyclododecane (PA-DOTA). , 1999, Bioorganic & medicinal chemistry.

[226]  R. Firestone,et al.  WWW Table of Radioactive Isotopes , 1999 .

[227]  S. Larson,et al.  Preparation of α-Emitting 213Bi-Labeled Antibody Constructs for Clinical Use , 1999 .

[228]  P J Sadler,et al.  Transferrin as a metal ion mediator. , 1999, Chemical reviews.

[229]  M. Welch,et al.  Radiometal-labeled agents (non-technetium) for diagnostic imaging. , 1999, Chemical reviews.

[230]  M. Sk̊alberg,et al.  The stability of some metal EDTA, DTPA and DOTA complexes: Application as tracers in groundwater studies , 1999 .

[231]  S. Jurisson,et al.  Potential technetium small molecule radiopharmaceuticals. , 1999, Chemical reviews.

[232]  S. Kennel,et al.  Improved in vivo stability of actinium-225 macrocyclic complexes. , 1999, Journal of medicinal chemistry.

[233]  W. Goddard,et al.  Mechanism and Energetics for Complexation of 90Y with 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic Acid (DOTA), a Model for Cancer Radioimmunotherapy , 1999 .

[234]  M. Welch,et al.  New multidentate ligands containing mercaptobenzyl functional groups, and biodistribution of gallium-67-TACN-HSB , 1999 .

[235]  T. O’Halloran,et al.  Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. , 1999, Science.

[236]  T. Waldmann,et al.  Similarities and differences in 111In- and 90Y-labeled 1B4M-DTPA antiTac monoclonal antibody distribution. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[237]  D. Scheinberg,et al.  Alpha-emitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: pharmacokinetics, bioactivity, toxicity and chemistry. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[238]  G. Denardo,et al.  Optimized conditions for chelation of yttrium-90-DOTA immunoconjugates. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[239]  M. Welch,et al.  The Gallium(III) and Indium(III) Complexes of Tris(2-mercaptobenzyl)amine and Tris(2-hydroxybenzyl)amine , 1998 .

[240]  S. Mirzadeh,et al.  Physical parameters and biological stability of yttrium(III) diethylenetriaminepentaacetic acid derivative conjugates. , 1998, Journal of medicinal chemistry.

[241]  V. Snieckus,et al.  A new convenient synthesis of bifunctional chelating agent 1-(4-aminobenzyl)-1,4,8,11-tetraazacyclotetradecane-N′,N″,N‴-triacetic acid [1-(H2NBn-TETA)] , 1998 .

[242]  M. Welch,et al.  SYNTHESIS AND STABILITIES OF THE GA(III) AND IN(III) CHELATES OF A NEW DIAMINODITHIOL BIFUNCTIONAL LIGAND , 1998 .

[243]  J. Stimmel,et al.  Samarium-153 and lutetium-177 chelation properties of selected macrocyclic and acyclic ligands. , 1998, Nuclear medicine and biology.

[244]  H. Maecke,et al.  1,4,7-Triazacyclononane-1-succinic acid-4,7-diacetic acid (NODASA): a new bifunctional chelator for radio gallium-labelling of biomolecules , 1998 .

[245]  T. Waldmann,et al.  Radioimmunotherapy targeting of HER2/neu oncoprotein on ovarian tumor using lead-212-DOTA-AE1. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[246]  I. Pastan,et al.  Stereochemical influence on the stability of radio-metal complexes in vivo. Synthesis and evaluation of the four stereoisomers of 2-(p-nitrobenzyl)-trans-CyDTPA. , 1997, Bioorganic & medicinal chemistry.

[247]  Marco Pagani,et al.  Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications , 1997, European Journal of Nuclear Medicine.

[248]  H. Haisma,et al.  Zirconium-labeled monoclonal antibodies and their distribution in tumor-bearing nude mice. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[249]  A. Rheingold,et al.  Gallium and Indium Complexes of Bis(amino thiol) (N(2)S(2)) Ligands. , 1996, Inorganic chemistry.

[250]  J. Lewis,et al.  Copper radionuclides and radiopharmaceuticals in nuclear medicine. , 1996, Nuclear medicine and biology.

[251]  Martin W. Brechbiel,et al.  Preparation of the Novel Chelating Agent N-(2-Aminoethyl)-trans-1,2-diaminocyclohexane- N,N‘,N‘‘-pentaacetic Acid (H5CyDTPA), a Preorganized Analogue of Diethylenetriaminepentaacetic Acid (H5DTPA), and the Structures of BiIII(CyDTPA)2- and BiIII(H2DTPA) Complexes , 1996 .

[252]  M. Brechbiel,et al.  An improved synthesis of cis,cis-1,3,5-triaminocyclohexane. Synthesis of novel hexadentate ligand derivatives for the preparation of gallium radiopharmaceuticals , 1996 .

[253]  A. Martell,et al.  Stability constants of metal complexes of macrocyclic ligands with pendant donor groups , 1996 .

[254]  R. Squire,et al.  The use of 212Pb-labeled monoclonal antibody in the treatment of murine erythroleukemia. , 1996, International journal of radiation oncology, biology, physics.

[255]  Shuang Liu,et al.  Selectivity of Potentially Hexadentate Amine Phenols for Ga3+ and In3+ in Aqueous Solution†,‡ , 1996 .

[256]  David E Reichert,et al.  Indium (III) and gallium (III) complexes of bis(aminoethanethiol) ligands with different denticities: stabilities, molecular modeling, and in vivo behavior. , 1996, Journal of medicinal chemistry.

[257]  M. Welch,et al.  N,N'-Ethylenedi-L-cysteine (EC) and Its Metal Complexes: Synthesis, Characterization, Crystal Structures, and Equilibrium Constants. , 1996, Inorganic chemistry.

[258]  M. Welch,et al.  Stability of metal ion complexes of 1,4,7-tris(2-mercaptoethyl)-1,4,7-triazacylclonane (TACN-TM) and molecular structure of In(C12H24N3S3) , 1995 .

[259]  Joseph H. Reibenspies,et al.  The Amide Oxygen as a Donor Group. Metal Ion Complexing Properties of Tetra-N-acetamide Substituted Cyclen: A Crystallographic, NMR, Molecular Mechanics, and Thermodynamic Study , 1995 .

[260]  R. Muller,et al.  Relaxometry, luminescence measurements, electrophoresis, and animal biodistribution of lanthanide(III) complexes of some polyaza macrocyclic acetates containing pyridine , 1995 .

[261]  J. Stimmel,et al.  Yttrium-90 chelation properties of tetraazatetraacetic acid macrocycles, diethylenetriaminepentaacetic acid analogues, and a novel terpyridine acyclic chelator. , 1995, Bioconjugate chemistry.

[262]  P. Fanwick,et al.  Structure-distribution relationships for metal-labeled myocardial imaging agents: comparison of a series of cationic gallium (III) complexes with hexadentate bis(salicylaldimine) ligands. , 1994, Journal of medicinal chemistry.

[263]  Arthur E. Martell,et al.  Stability of metal ion complexes of N,N′-bis(2-hydroxybenzyl)ethylenediamine-N,N′-diacetic acid , 1994 .

[264]  Michael F. Tweedle,et al.  Synthesis, stability, and structure of gadolinium(III) and yttrium(III) macrocyclic poly(amino carboxylates) , 1994 .

[265]  É. Tóth,et al.  Stability constants of the lanthanide(III)-1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetate complexes , 1994 .

[266]  I. Pastan,et al.  Evaluation of the serum stability and in vivo biodistribution of CHX-DTPA and other ligands for yttrium labeling of monoclonal antibodies. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[267]  R. Hancock,et al.  Stability enhancement of heavy-metal–macrocycle complexes via pendant amide coordination , 1994 .

[268]  H. Herzog,et al.  Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[269]  I. Pastan,et al.  Evaluation of a new DTPA-derivative chelator: comparative biodistribution and imaging studies of 111In-labeled B3 monoclonal antibody in athymic mice bearing human epidermoid carcinoma xenografts. , 1993, Nuclear medicine and biology.

[270]  M. Brechbiel,et al.  Synthesis of 2-(p-thiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid: application of the 4-methoxy-2,3,6-trimethylbenzenesulfonamide protecting group in the synthesis of macrocyclic polyamines. , 1993, Bioconjugate chemistry.

[271]  H. Haisma,et al.  Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89. , 1992, International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes.

[272]  R. Hancock,et al.  Chelate ring size and metal ion selection. The basis of selectivity for metal ions in open-chain ligands and macrocycles , 1992 .

[273]  M. Brechbiel,et al.  Convenient synthesis of bifunctional tetraaza macrocycles. , 1992, Bioconjugate chemistry.

[274]  R. Delgado,et al.  The stability of the metal complexes of cyclic tetra-aza tetra-acetic acids. , 1992, Talanta.

[275]  M. Brechbiel,et al.  Synthesis of C-functionalized trans-cyclohexyldiethylenetriaminepenta-acetic acids for labelling of monoclonal antibodies with the bismuth-212 α-particle emitter , 1992 .

[276]  Arthur E. Martell,et al.  Stabilities of trivalent metal ion complexes of the tetraacetate derivatives of 12-, 13- and 14-membered tetraazamacrocycles , 1991 .

[277]  A. Martell,et al.  Stabilities of the alkaline earth and divalent transition metal complexes of the tetraazamacrocyclic tetraacetic acid ligands , 1991 .

[278]  M. Brechbiel,et al.  Backbone-substituted DTPA ligands for 90Y radioimmunotherapy. , 1991, Bioconjugate chemistry.

[279]  J. P. Cox,et al.  Structure and Solution Stability of Indium and Gallium Complexes of 1, 4,7‐Triazacyclononanetriacetate and of Yttrium Complexes of 1,4,7,10‐ Tetraazacyclododecanetetraacetate and Related Ligands: Kinetically Stable Complexes for Use i , 1991 .

[280]  A. Martell,et al.  New multidentate ligands. XXIX, Stabilities of iron(III) and gallium(III) complexes of a tris(hydroxamate) cryptand and two open-chain analogues , 1991 .

[281]  A. Martell,et al.  STABILITIES OF THE FE(III), GA(III) AND IN(III) CHELATES OF N,N',N''-TRIAZACYCLONONANETRIACETIC ACID , 1991 .

[282]  T. Koike,et al.  Thermodynamic and kinetic studies of lanthanide complexes of 1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N''''-pentaacetic acid and 1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N'''',N'''''-hexaacetic acid , 1991 .

[283]  H. Kung,et al.  Synthesis, characterization and solid state structure of a neutral gallium(III) amino thiolate complex: a potential radiopharmaceutical for PET imaging , 1991 .

[284]  J. P. Cox,et al.  The in vivo release of 90Y from cyclic and acyclic ligand-antibody conjugates. , 1991, International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology.

[285]  T. Visser,et al.  [111In-DTPA-D-Phe1]-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: synthesis, radiolabeling and in vitro validation. , 1991, Life sciences.

[286]  S. Mirzadeh,et al.  Comparative biodistribution studies of DTPA-derivative bifunctional chelates for radiometal labeled monoclonal antibodies. , 1991, International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology.

[287]  O. Gansow Newer approaches to the radiolabeling of monoclonal antibodies by use of metal chelates. , 1991, International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology.

[288]  S. Mirzadeh,et al.  Improved in vivo stability and tumor targeting of bismuth-labeled antibody. , 1990, Cancer research.

[289]  A. Martell,et al.  N,N′-bispyridoxylethylenediamine-N,N′-diacetic acid (PLED) and N,N′-bis(2-hydroxy-5-sulfobenzylethylenediamine-N,N′-diacetic acid (SHBED) , 1989 .

[290]  R. Hancock,et al.  Metal ion recognition in ligands with negatively charged oxygen donor groups. Complexation of iron(III), gallium(III), indium(III), aluminum(III), and other highly charged metal ions , 1989 .

[291]  T. Kaden,et al.  Synthesis and X-ray structural characterisation of seven co-ordinate macrocyclic In3+ complexes with relevance to radiopharmaceutical applications , 1989 .

[292]  K. Hisada,et al.  Relation between the location of elements in the periodic table and various organ-uptake rates. , 1989, International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology.

[293]  G. Denardo,et al.  Copper-67-labeled monoclonal antibody Lym-1, a potential radiopharmaceutical for cancer therapy: labeling and biodistribution in RAJI tumored mice. , 1988, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[294]  M. Welch,et al.  Targeting radiopharmaceuticals: comparative biodistribution studies of gallium and indium complexes of multidentate ligands. , 1988, International journal of radiation applications and instrumentation. Part B, Nuclear medicine and biology.

[295]  A. Bevilacqua,et al.  Equilibrium and thermodynamic study of the aqueous complexation of 1,4,7-triazacyclononane-N,N',N''-triacetic acid with protons, alkaline-earth-metal cations, and copper(II) , 1987 .

[296]  A. Martell,et al.  Critical stability constants, enthalpies and entropies for the formation of metal complexes of aminopolycarboxylic acids and carboxylic acids , 1987 .

[297]  T. Waldmann,et al.  Radionuclide-conjugated monoclonal antibodies: a synthesis of immunology, inorganic chemistry and nuclear science , 1986 .

[298]  D. E. Simpson,et al.  Synthesis of 1-(p-isothiocyanatobenzyl) derivatives of DTPA and EDTA. Antibody labeling and tumor-imaging studies , 1986 .

[299]  W R Harris,et al.  Thermodynamic binding constants for gallium transferrin. , 1983, Biochemistry.

[300]  R. Delgado,et al.  Metal complexes of cyclic tetra-azatetra-acetic acids. , 1982, Talanta.

[301]  K. Raymond,et al.  Ferric ion sequestering agents. 10. Selectivity of sulfonated poly(catechoylamides) for ferric ion , 1982 .

[302]  M. Welch,et al.  The chemistry of gallium and indium as related to radiopharmaceutical production. , 1981, International journal of nuclear medicine and biology.

[303]  Richard B. Firestone,et al.  Table of Isotopes , 1978 .

[304]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .