Recent Advances in Rechargeable Li–CO2 Batteries

[1]  Zhong-Jun Li,et al.  Boosting Li-CO2 battery performances by engineering oxygen vacancy on NiO nanosheets array , 2021 .

[2]  Yi‐Chun Lu,et al.  Electrochemical reduction of CO2 in ionic liquid: Mechanistic study of Li–CO2 batteries via in situ ambient pressure X-ray photoelectron spectroscopy , 2021 .

[3]  C. Shu,et al.  Oxygen vacancy engineering of vertically aligned NiO nanosheets for effective CO2 reduction and capture in Li-CO2 battery , 2021, Electrochimica Acta.

[4]  Jun Lu,et al.  Correlating Catalyst Design and Discharged Product to Reduce Overpotential in Li-CO2 Batteries. , 2021, Small.

[5]  Junxiang Zhang,et al.  Vertically Aligned N-doped Carbon Nanotubes Arrays as Efficient Binder-free Catalysts for Flexible Li-CO2 Batteries , 2021 .

[6]  P. He,et al.  A rechargeable all-solid-state Li–CO2 battery using a Li1.5Al0.5Ge1.5(PO4)3 ceramic electrolyte and nanoscale RuO2 catalyst , 2021 .

[7]  E. Wang,et al.  Kinetics of the CO2 reduction reaction in aprotic Li–CO2 batteries: a model study , 2021 .

[8]  H. Gong,et al.  Nano‐Sized Au Particle‐Modified Carbon Nanotubes as an Effective and Stable Cathode for Li−CO 2 Batteries , 2021 .

[9]  Yongyao Xia,et al.  Mechanism-of-Action Elucidation of Reversible Li-CO2 Batteries Using the Water-in-Salt Electrolyte. , 2021, ACS applied materials & interfaces.

[10]  Ru‐Shi Liu,et al.  Catalytically Active Site Identification of Molybdenum Disulfide as Gas Cathode in a Nonaqueous Li-CO2 Battery. , 2021, ACS applied materials & interfaces.

[11]  Feixiang Wu,et al.  Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities. , 2021, ACS nano.

[12]  Yu Zhang,et al.  Single Metal Site and Versatile Transfer Channel Merged into Covalent Organic Frameworks Facilitate High-Performance Li-CO2 Batteries , 2020, ACS central science.

[13]  Ru‐Shi Liu,et al.  Comparative Study of Li-CO2 and Na-CO2 Batteries with Ru@CNT as a Cathode Catalyst. , 2020, ACS applied materials & interfaces.

[14]  Kaixue Wang,et al.  Electrocatalyst design for aprotic Li–CO2 batteries , 2020 .

[15]  Peng Wang,et al.  Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications , 2020 .

[16]  M. Sawangphruk,et al.  Enhancing bifunctional electrocatalysts of hollow Co3O4 nanorods with oxygen vacancies towards ORR and OER for Li–O2 batteries , 2020 .

[17]  Weibin Zhang,et al.  Highly Efficient Nb2C MXene Cathode Catalyst with Uniform O‐Terminated Surface for Lithium–Oxygen Batteries , 2020, Advanced Energy Materials.

[18]  A. Manthiram,et al.  Freestanding vanadium nitride nanowire membrane as an efficient, carbon-free gas diffusion cathode for Li–CO2 batteries , 2020 .

[19]  A. Manthiram,et al.  Recent Advances in Lithium–Carbon Dioxide Batteries , 2020, Small Structures.

[20]  Dehui Guan,et al.  In situ fabricated photo-electro-catalytic hybrid cathode for light-assisted lithium–CO2 batteries , 2020 .

[21]  Jingwen Zhou,et al.  Flexible metal–gas batteries: a potential option for next-generation power accessories for wearable electronics , 2020 .

[22]  Dongyang Zhang,et al.  Understanding the Dual-phase Synergy Mechanism in Mn2O3-Mn3O4 Catalyst for Efficient Li-CO2 Batteries. , 2020, ACS applied materials & interfaces.

[23]  Yongku Kang,et al.  Understanding Reaction Pathways in High Dielectric Electrolyte using β-Mo2C as a Catalyst for Li-CO2 Battery. , 2020, ACS applied materials & interfaces.

[24]  Shaojun Guo,et al.  Ultrathin RuRh Alloy Nanosheets Enable High-Performance Lithium-CO2 Battery , 2020, Matter.

[25]  Xueliang Sun,et al.  Advanced characterization techniques for solid state lithium battery research , 2020, Materials Today.

[26]  Siwu Li,et al.  Improving areal capacity of flexible Li–CO2 batteries by constructing a freestanding cathode with monodispersed MnO nanoparticles in N-doped mesoporous carbon nanofibers , 2020 .

[27]  Dehui Guan,et al.  Light/Electricity Energy Conversion and Storage for Hierarchical Porous In2S3@CNT/SS Cathode towards a Flexible Li-CO2 Battery. , 2020, Angewandte Chemie.

[28]  Huisheng Peng,et al.  Li‐CO2 Batteries Efficiently Working at Ultra‐Low Temperatures , 2020, Advanced Functional Materials.

[29]  Yun Qiao,et al.  Synergistic effect of bifunctional catalytic sites and defect engineering for high-performance Li–CO2 batteries , 2020 .

[30]  J. Connell,et al.  An ultra-long life, high-performance, flexible Li–CO2 battery based on multifunctional carbon electrocatalysts , 2020 .

[31]  Zhongwei Chen,et al.  Ultrafine, high-loading and oxygen-deficient cerium oxide embedded on mesoporous carbon nanosheets for superior lithium–oxygen batteries , 2020 .

[32]  D. Aurbach,et al.  Alloy Anode Materials for Rechargeable Mg Ion Batteries , 2020, Advanced Energy Materials.

[33]  Xiaowei Mu,et al.  Towards a stable Li–CO2 battery: The effects of CO2 to the Li metal anode , 2020 .

[34]  Jianli Cheng,et al.  Unraveling Reaction Mechanisms of Mo2C as Cathode Catalyst in Li-CO2 Battery. , 2020, Journal of the American Chemical Society.

[35]  Ru‐Shi Liu,et al.  Spinel Zinc Cobalt Oxide (ZnCo2O4) Porous Nanorods as a Cathode Material for Highly Durable Li-CO2 Batteries. , 2020, ACS applied materials & interfaces.

[36]  Xin-bo Zhang,et al.  A Porosity-Adjustable Plastic Crystal Electrolyte Enabled High-Performance All-Solid-State Lithium-Oxygen Batteries. , 2020, Angewandte Chemie.

[37]  Jun Lu,et al.  High‐Performance, Long‐Life, Rechargeable Li–CO2 Batteries based on a 3D Holey Graphene Cathode Implanted with Single Iron Atoms , 2020, Advanced materials.

[38]  S. Liao,et al.  Design of ultralong-life Li–CO2 batteries with IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes , 2020 .

[39]  Zhong Lin Wang,et al.  High-Performance Li-CO2 Batteries from Free-Standing, Binder-Free, Bifunctional Three-Dimensional Carbon Catalysts , 2020 .

[40]  Dong Ha Kim,et al.  Mechanistic Study Revealing the Role of the Br3−/Br2 Redox Couple in CO2‐Assisted Li–O2 Batteries , 2020, Advanced Energy Materials.

[41]  Xiaowei Mu,et al.  Using a Heme‐Based Nanozyme as Bifunctional Redox Mediator for Li−O 2 Batteries , 2020 .

[42]  Zhen Zhou,et al.  Metal–CO2 Batteries at the Crossroad to Practical Energy Storage and CO2 Recycle , 2019, Advanced Functional Materials.

[43]  Juan Gao,et al.  Three-dimensional interlinked Co3O4-CNTs hybrids as novel oxygen electrocatalyst , 2019 .

[44]  M. Xiao,et al.  CO2 Nanoenrichment and Nanoconfinement in Cage of Imine Covalent Organic Frameworks for High-Performance CO2 Cathodes in Li-CO2 Batteries. , 2019, Small.

[45]  A. Manthiram,et al.  Efficient Li–CO2 Batteries with Molybdenum Disulfide Nanosheets on Carbon Nanotubes as a Catalyst , 2019, ACS Applied Energy Materials.

[46]  R. Johnston,et al.  Tuning electronic and composition effects in ruthenium-copper alloy nanoparticles anchored on carbon nanofibers for rechargeable Li-CO2 batteries , 2019, Chemical Engineering Journal.

[47]  E. Reisner,et al.  Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems , 2019, Nature Materials.

[48]  Kun Zhang,et al.  Covalent‐Organic‐Framework‐Based Li–CO2 Batteries , 2019, Advanced materials.

[49]  Betar M. Gallant,et al.  The Governing Role of Solvent on Discharge Activity in Lithium-CO2 Batteries. , 2019, The journal of physical chemistry letters.

[50]  Rajeev S. Assary,et al.  High rate and long cycle life in Li-O2 batteries with highly efficient catalytic cathode configured with Co3O4 nanoflower , 2019, Nano Energy.

[51]  Zhong Li,et al.  Porous NiO nanofibers as an efficient electrocatalyst towards long cycling life rechargeable Li–CO2 batteries , 2019, Electrochimica Acta.

[52]  C. Shu,et al.  Design strategies toward catalytic materials and cathode structures for emerging Li–CO2 batteries , 2019, Journal of Materials Chemistry A.

[53]  Jun Chen,et al.  Safety-reinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte , 2019, Nano Research.

[54]  Xiaowei Mu,et al.  H2O self-trapping air cathode of Li–O2 battery enabling low charge potential operating in dry system , 2019, Nano Energy.

[55]  S. Dou,et al.  Targeted Synergy between Adjacent Co Atoms on Graphene Oxide as an Efficient New Electrocatalyst for Li–CO2 Batteries , 2019, Advanced Functional Materials.

[56]  Xiaowei Mu,et al.  Li–CO2 and Na–CO2 Batteries: Toward Greener and Sustainable Electrical Energy Storage , 2019, Advanced materials.

[57]  Rajeev S. Assary,et al.  A Long‐Cycle‐Life Lithium–CO2 Battery with Carbon Neutrality , 2019, Advanced materials.

[58]  L. Mai,et al.  A New View of Supercapacitors: Integrated Supercapacitors , 2019, Advanced Energy Materials.

[59]  Tongchao Liu,et al.  Bamboo‐Like Nitrogen‐Doped Carbon Nanotube Forests as Durable Metal‐Free Catalysts for Self‐Powered Flexible Li–CO2 Batteries , 2019, Advanced materials.

[60]  T. Shiga,et al.  Bifunctional Catalytic Activity of Iodine Species for Lithium–Carbon Dioxide Battery , 2019, ACS Sustainable Chemistry & Engineering.

[61]  B. Wei,et al.  Realizing Interfacial Electronic Interaction within ZnS Quantum Dots/N‐rGO Heterostructures for Efficient Li–CO2 Batteries , 2019, Advanced Energy Materials.

[62]  Zhen Liu,et al.  Revealing the impacting factors of cathodic carbon catalysts for Li-CO2 batteries in the pore-structure point of view , 2019, Electrochimica Acta.

[63]  Yuping Wu,et al.  Carbon‐Free Cathode Materials for Li−O 2 Batteries , 2019, Batteries & Supercaps.

[64]  Yan Wang,et al.  Computational Screening of Cathode Coatings for Solid-State Batteries , 2019, Joule.

[65]  A. Manthiram,et al.  Phenyl Disulfide Additive for Solution‐Mediated Carbon Dioxide Utilization in Li–CO2 Batteries , 2019, Advanced Energy Materials.

[66]  Xiangfeng Liu,et al.  Ultrathin Co3O4 Nanosheets with Edge-Enriched {111} Planes as Efficient Catalysts for Lithium–Oxygen Batteries , 2019, ACS Catalysis.

[67]  Xiaowei Mu,et al.  Transient, in situ synthesis of ultrafine ruthenium nanoparticles for a high-rate Li–CO2 battery , 2019, Energy & Environmental Science.

[68]  Xingbin Yan,et al.  Recent advances in understanding Li–CO2 electrochemistry , 2019, Energy & Environmental Science.

[69]  P. Qi,et al.  Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li–CO2 batteries , 2019, Energy & Environmental Science.

[70]  S. Feng,et al.  Ru nanosheet catalyst supported by three-dimensional nickel foam as a binder-free cathode for Li–CO2 batteries , 2019, Electrochimica Acta.

[71]  Bin Wang,et al.  Highly Surface‐Wrinkled and N‐Doped CNTs Anchored on Metal Wire: A Novel Fiber‐Shaped Cathode toward High‐Performance Flexible Li–CO2 Batteries , 2019, Advanced Functional Materials.

[72]  S. Feng,et al.  Drawing a Pencil‐Trace Cathode for a High‐Performance Polymer‐Based Li–CO2 Battery with Redox Mediator , 2019, Advanced Functional Materials.

[73]  Jianguo Liu,et al.  Carbon Nanotube@RuO2 as a High Performance Catalyst for Li-CO2 Batteries. , 2019, ACS applied materials & interfaces.

[74]  Yuping Wu,et al.  Promoting Li-O2 Batteries With Redox Mediators. , 2019, ChemSusChem.

[75]  Zhangquan Peng,et al.  Probing Lithium Carbonate Formation in Trace-O2-Assisted Aprotic Li-CO2 Batteries Using in Situ Surface-Enhanced Raman Spectroscopy. , 2019, The journal of physical chemistry letters.

[76]  Xizheng Liu,et al.  Flexible Lithium-Air Battery in Ambient Air with an In Situ Formed Gel Electrolyte. , 2018, Angewandte Chemie.

[77]  Betar M. Gallant,et al.  Tailoring the Discharge Reaction in Li-CO2 Batteries through Incorporation of CO2 Capture Chemistry , 2018, Joule.

[78]  Jun Lu,et al.  A Quasi‐Solid‐State Flexible Fiber‐Shaped Li–CO2 Battery with Low Overpotential and High Energy Efficiency , 2018, Advanced materials.

[79]  Feng Wu,et al.  Crumpled Ir Nanosheets Fully Covered on Porous Carbon Nanofibers for Long‐Life Rechargeable Lithium–CO2 Batteries , 2018, Advanced materials.

[80]  Xianglong Li,et al.  Rational Design of Carbon‐Rich Materials for Energy Storage and Conversion , 2018, Advanced materials.

[81]  F. Illas,et al.  Assessing the Performance of Cobalt Phthalocyanine Nanoflakes as Molecular Catalysts for Li-Promoted Oxalate Formation in Li–CO2–Oxalate Batteries , 2018, The Journal of Physical Chemistry C.

[82]  J. Connell,et al.  High‐Performance Li‐CO2 Batteries Based on Metal‐Free Carbon Quantum Dot/Holey Graphene Composite Catalysts , 2018, Advanced Functional Materials.

[83]  E. Croiset,et al.  Orbital Interactions in Bi‐Sn Bimetallic Electrocatalysts for Highly Selective Electrochemical CO2 Reduction toward Formate Production , 2018, Advanced Energy Materials.

[84]  B. Dunn,et al.  Design and Mechanisms of Asymmetric Supercapacitors. , 2018, Chemical reviews.

[85]  Yi‐Chun Lu,et al.  A Highly Active Oxygen Evolution Catalyst for Lithium-Oxygen Batteries Enabled by High-Surface-Energy Facets , 2018, Joule.

[86]  Maoxiang Wu,et al.  A porous Zn cathode for Li–CO2 batteries generating fuel-gas CO , 2018 .

[87]  Qinghua Zhang,et al.  Direct observation of noble metal nanoparticles transforming to thermally stable single atoms , 2018, Nature Nanotechnology.

[88]  Martina Sandroni,et al.  Cadmium-free CuInS2/ZnS quantum dots as efficient and robust photosensitizers in combination with a molecular catalyst for visible light-driven H2 production in water , 2018 .

[89]  Zhen Zhou,et al.  Fabricating Ir/C Nanofiber Networks as Free-Standing Air Cathodes for Rechargeable Li-CO2 Batteries. , 2018, Small.

[90]  S. Cai,et al.  An Open‐Structured Matrix as Oxygen Cathode with High Catalytic Activity and Large Li2O2 Accommodations for Lithium–Oxygen Batteries , 2018 .

[91]  Jun Jiang,et al.  Defective Carbon–CoP Nanoparticles Hybrids with Interfacial Charges Polarization for Efficient Bifunctional Oxygen Electrocatalysis , 2018 .

[92]  Yi Cui,et al.  Materials for lithium-ion battery safety , 2018, Science Advances.

[93]  P. Qi,et al.  Carbon dioxide in the cage: manganese metal–organic frameworks for high performance CO2 electrodes in Li–CO2 batteries , 2018 .

[94]  Shichao Wu,et al.  Li2CO3-free Li–O2/CO2 battery with peroxide discharge product , 2018 .

[95]  Zhaoxiang Wang,et al.  Polymer electrolyte with composite cathode for solid-state Li–CO2 battery , 2018, Rare Metals.

[96]  B. McCloskey,et al.  Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen , 2018, Angewandte Chemie.

[97]  Jun Huang,et al.  Achilles' Heel of Lithium-Air Batteries: Lithium Carbonate. , 2018, Angewandte Chemie.

[98]  Xuan Hu,et al.  A lithium–oxygen battery with a long cycle life in an air-like atmosphere , 2018, Nature.

[99]  A. Grimaud,et al.  Electrochemical Reduction of CO2 Mediated by Quinone Derivatives: Implication for Li–CO2 Battery , 2018 .

[100]  Zhen Zhou,et al.  Identification of cathode stability in Li–CO2 batteries with Cu nanoparticles highly dispersed on N-doped graphene , 2018 .

[101]  Zhen Zhou,et al.  High performance Li–CO2 batteries with NiO–CNT cathodes , 2018 .

[102]  S. Fukuzumi Production of Liquid Solar Fuels and Their Use in Fuel Cells , 2017 .

[103]  C. Grey,et al.  Understanding LiOH Chemistry in a Ruthenium‐Catalyzed Li–O2 Battery , 2017, Angewandte Chemie.

[104]  Zhen Zhou,et al.  Verifying the Rechargeability of Li‐CO2 Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N‐Doped Graphene , 2017, Advanced science.

[105]  Dong Ha Kim,et al.  Hierarchical Porous Carbonized Co3O4 Inverse Opals via Combined Block Copolymer and Colloid Templating as Bifunctional Electrocatalysts in Li–O2 Battery , 2017 .

[106]  Ping He,et al.  Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage , 2017 .

[107]  S. Ramakrishna,et al.  Electrospun hollow nanofibers for advanced secondary batteries , 2017 .

[108]  Zhen Zhou,et al.  Improving Electrochemical Performances of Rechargeable Li−CO2 Batteries with an Electrolyte Redox Mediator , 2017 .

[109]  Zehua Zhou,et al.  DFT study of oxygen adsorption on Mo2C(001) and (201) surfaces at different conditions , 2017 .

[110]  Yongyao Xia,et al.  A Rechargeable Li-CO2 Battery with a Gel Polymer Electrolyte. , 2017, Angewandte Chemie.

[111]  Z. Y. Liu,et al.  Decomposing lithium carbonate with a mobile catalyst , 2017 .

[112]  Lili Liu,et al.  Mo2C/CNT: An Efficient Catalyst for Rechargeable Li–CO2 Batteries , 2017 .

[113]  J. Connell,et al.  Highly Rechargeable Lithium-CO2 Batteries with a Boron- and Nitrogen-Codoped Holey-Graphene Cathode. , 2017, Angewandte Chemie.

[114]  Jun Chen,et al.  Flexible Li-CO2 Batteries with Liquid-Free Electrolyte. , 2017, Angewandte Chemie.

[115]  Yang Sun,et al.  From O2- to HO2- : Reducing By-Products and Overpotential in Li-O2 Batteries by Water Addition. , 2017, Angewandte Chemie.

[116]  Huamin Zhang,et al.  Porous membranes in secondary battery technologies. , 2017, Chemical Society Reviews.

[117]  Ping He,et al.  A reversible lithium–CO2 battery with Ru nanoparticles as a cathode catalyst , 2017 .

[118]  Michelle M. Harris,et al.  Towards real Li-air batteries: A binder-free cathode with high electrochemical performance in CO2 and O2 , 2017 .

[119]  Xuetao Cao,et al.  Evolving strategies for tumor immunotherapy: enhancing the enhancer and suppressing the suppressor , 2017 .

[120]  Jianming Zheng,et al.  Complete Decomposition of Li2CO3 in Li-O2 Batteries Using Ir/B4C as Noncarbon-Based Oxygen Electrode. , 2017, Nano letters.

[121]  Jianchao Sun,et al.  Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes , 2017, Science Advances.

[122]  A. Grimaud,et al.  Chemical vs Electrochemical Formation of Li2CO3 as a Discharge Product in Li-O2/CO2 Batteries by Controlling the Superoxide Intermediate. , 2017, The journal of physical chemistry letters.

[123]  Ib Chorkendorff,et al.  Toward sustainable fuel cells , 2016, Science.

[124]  Amir Faghri,et al.  A critical review of macroscopic modeling studies on Li O 2 and Li-air batteries using organic electrolyte: Challenges and opportunities , 2016 .

[125]  Wallace S. Broecker,et al.  Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions , 2016, Science.

[126]  P. He,et al.  Progress in research on Li–CO2 batteries: Mechanism, catalyst and performance , 2016 .

[127]  L. Gu,et al.  Photochemical route for synthesizing atomically dispersed palladium catalysts , 2016, Science.

[128]  Ping He,et al.  Exploring the electrochemical reaction mechanism of carbonate oxidation in Li–air/CO2 battery through tracing missing oxygen , 2016 .

[129]  Zhang Zhang,et al.  Rechargeable Li-CO2 batteries with carbon nanotubes as air cathodes. , 2015, Chemical communications.

[130]  Zhang Zhang,et al.  The First Introduction of Graphene to Rechargeable Li-CO2 Batteries. , 2015, Angewandte Chemie.

[131]  Richard Van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[132]  Richard van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[133]  Yingchun Lyu,et al.  Rechargeable Li/CO2–O2 (2 : 1) battery and Li/CO2 battery , 2014 .

[134]  Moran Balaish,et al.  A critical review on lithium-air battery electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[135]  K. Németh,et al.  CO2/oxalate cathodes as safe and efficient alternatives in high energy density metal–air type rechargeable batteries , 2013, 1308.5457.

[136]  Hyung-Kyu Lim,et al.  Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. , 2013, Journal of the American Chemical Society.

[137]  Stefano Meini,et al.  Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li-air cells. , 2013, Physical chemistry chemical physics : PCCP.

[138]  Lynden A. Archer,et al.  The Li–CO2 battery: a novel method for CO2 capture and utilization , 2013 .

[139]  Lynden A. Archer,et al.  Carbon dioxide assist for non-aqueous sodium-oxygen batteries , 2013 .

[140]  G. Wallraff,et al.  Implications of CO2 Contamination in Rechargeable Nonaqueous Li-O2 Batteries. , 2013, The journal of physical chemistry letters.

[141]  Akira Yoshino,et al.  The birth of the lithium-ion battery. , 2012, Angewandte Chemie.

[142]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[143]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[144]  Donald J. Siegel,et al.  Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. , 2012, Journal of the American Chemical Society.

[145]  Tao Wang,et al.  Stability of β-Mo2C Facets from ab Initio Atomistic Thermodynamics , 2011 .

[146]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[147]  R. Li,et al.  Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. , 2011, Chemical communications.

[148]  Xiaofeng Yang,et al.  Single-atom catalysis of CO oxidation using Pt1/FeOx. , 2011, Nature chemistry.

[149]  Haoshen Zhou,et al.  Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. , 2011, ACS nano.

[150]  Tohru Shiga,et al.  A Li-O2/CO2 battery. , 2011, Chemical communications.

[151]  A. Spek,et al.  Electrocatalytic CO2 Conversion to Oxalate by a Copper Complex , 2010, Science.

[152]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[153]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[154]  Takashi Kuboki,et al.  Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte , 2005 .

[155]  Lanny D. Schmidt,et al.  Catalytic partial oxidation of natural gas to syngas , 1995 .

[156]  X. Sun,et al.  Recent progress and prospects of Li-CO2 batteries: Mechanisms, catalysts and electrolytes , 2021 .

[157]  Xueliang Sun,et al.  Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries , 2012 .