Global Optimization Algorithms in Multidisciplinary DesignOptimization

While Multidisciplinay Design Optimization (MDO) literature focuses mainly on the development of different formulations, through the manipulation of design variables, less attention is generally devoted to the combination of specific MDO formulations with existing nonlinear optimization algorithms. In this paper, the focus is on the application of a Global Optimization (GO) algorithm to an MDO problem. We first introduce and describe some MDO approaches from the literature. Then, we consider our MDO formulation where we deal with the GO boxconstrained problem min a≤x≤b f(x), f : IR → IR.

[1]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[2]  N. M. Alexandrov,et al.  Analytical and Computational Properties of Distributed Approaches to MDO , 2000 .

[3]  N. M. Alexandrov,et al.  Algorithmic Perspectives on Problem Formulations in MDO , 2000 .

[4]  Emilio F. Campana,et al.  Dynamic system analysis and initial particles position in Particle Swarm Optimization , 2006 .

[5]  Yongling Zheng,et al.  On the convergence analysis and parameter selection in particle swarm optimization , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[6]  William Bollay,et al.  A Non-linear Wing Theory and its Application to Rectangular Wings of Small Aspect Ratio , 1939 .

[7]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[8]  Albert A. Groenwold,et al.  A Study of Global Optimization Using Particle Swarms , 2005, J. Glob. Optim..

[9]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[10]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[11]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[12]  P. Sarachik Principles of linear systems , 1997 .

[13]  Natalia Alexandrov,et al.  Multidisciplinary design optimization : state of the art , 1997 .

[14]  Emilio F. Campana,et al.  Particle Swarm Optimization: dynamic system analysis for parameter selection in global optimization frameworks , 2005 .

[15]  Robert Michael Lewis,et al.  Practical Aspects Of Variable Reduction Formulations And Reduced Basis Algorithms In Multidisciplina , 1995 .

[16]  Raphael T. Haftka,et al.  Numerical difficulties associated with using equality constraints to achieve multi-level decomposition in structural optimization , 1986 .

[17]  John E. Dennis,et al.  Problem Formulation for Multidisciplinary Optimization , 1994, SIAM J. Optim..