Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond.

Deterministic coupling of single solid-state emitters to nanocavities is the key for integrated quantum information devices. We here fabricate a photonic crystal cavity around a preselected single silicon-vacancy color center in diamond and demonstrate modification of the emitters internal population dynamics and radiative quantum efficiency. The controlled, room-temperature cavity coupling gives rise to a resonant Purcell enhancement of the zero-phonon transition by a factor of 19, coming along with a 2.5-fold reduction of the emitter's lifetime.

[1]  M. Steel,et al.  Effects of the hosting nano-environment modifications on NV centres fluorescence emission , 2014 .

[2]  Neil B. Manson,et al.  Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces , 2014, 1401.4106.

[3]  J. Tetienne,et al.  Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample , 2014, 1401.2795.

[4]  M. Atatüre,et al.  Optical signatures of silicon-vacancy spins in diamond , 2013, Nature Communications.

[5]  M. Doherty,et al.  Electronic structure of the negatively charged silicon-vacancy center in diamond , 2013, 1310.3131.

[6]  Christian Hepp,et al.  Electronic structure of the silicon vacancy color center in diamond. , 2013, Physical review letters.

[7]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[8]  M. Markham,et al.  Coupling of NV centers to photonic crystal nanobeams in diamond. , 2013, Nano letters.

[9]  F. Jelezko,et al.  Creation of multiple identical single photon emitters in diamond , 2013 .

[10]  J. Maze,et al.  Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties , 2013, 1310.2137.

[11]  Hannes Bernien,et al.  Heralded entanglement between solid-state qubits separated by 3 meters , 2013 .

[12]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[13]  M. Lončar,et al.  Quantum photonic networks in diamond , 2013 .

[14]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[15]  A. Mohtashami,et al.  Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments , 2012, 1212.5172.

[16]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[17]  Ying Li,et al.  Topological quantum computing with a very noisy network and local error rates approaching one percent , 2012, Nature Communications.

[18]  Jakob Reichel,et al.  Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity. , 2013, Physical review letters.

[19]  Christoph Becher,et al.  Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. , 2012, Optics express.

[20]  S. Gsell,et al.  Electronic transitions of single silicon vacancy centers in the near-infrared spectral region , 2012, 1204.4994.

[21]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[22]  M. Markham,et al.  Quantum interference of single photons from remote nitrogen-vacancy centers in diamond. , 2011, Physical review letters.

[23]  Christoph Pauly,et al.  One- and two-dimensional photonic crystal microcavities in single crystal diamond. , 2011, Nature nanotechnology.

[24]  S. Gsell,et al.  Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium , 2011, 1108.3743.

[25]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[26]  Martin Fischer,et al.  Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium , 2010, 1008.4736.

[27]  I. Prieto,et al.  Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity. , 2010, Optics express.

[28]  Jeremy L O'Brien,et al.  Cavity enhanced spin measurement of the ground state spin of an NV center in diamond , 2009 .

[29]  Masayuki Fujita,et al.  Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystals , 2005, Science.

[30]  Evelyn L. Hu,et al.  Positioning photonic crystal cavities to single InAs quantum dots , 2004 .

[31]  Matthias Schreck,et al.  A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers , 2004 .

[32]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[33]  S.R.J. Brueck,et al.  Radiation from a dipole embedded in a dielectric slab , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[35]  R. Loudon,et al.  Vacuum field fluctuations and spontaneous emission in a dielectric slab , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[36]  Chew Radiation and lifetimes of atoms inside dielectric particles. , 1988, Physical review. A, General physics.