Inference for Weibull distribution based on progressively Type-II hybrid censored data

Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid censoring schemes. In this paper, we discuss the statistical inference on Weibull parameters when the observed data are progressively Type-II hybrid censored. We derive the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the Weibull parameters. We then use the asymptotic distributions of the maximum likelihood estimators to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and also by using the Gibbs sampling procedure. Monte Carlo simulations are then performed for comparing the confidence intervals based on all those different methods. Finally, one data set is analyzed for illustrative purposes.

[1]  Bong-Jin Yum,et al.  Development of r,T hybrid sampling plans for exponential lifetime distributions , 1996 .

[2]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[3]  Narayanaswamy Balakrishnan,et al.  Approximate MLEs for the location and scale parameters of the extreme value distribution with censoring , 1991 .

[4]  N. Balakrishnan,et al.  Inference for the extreme value distribution under progressive Type-II censoring , 2004 .

[5]  Narayanaswamy Balakrishnan,et al.  Progressive censoring methodology: an appraisal , 2007 .

[6]  B. Epstein Truncated Life Tests in the Exponential Case , 1954 .

[7]  N. Balakrishnan,et al.  Point and interval estimation for Gaussian distribution, based on progressively Type-II censored samples , 2003, IEEE Trans. Reliab..

[8]  Debasis Kundu,et al.  Analysis of Type-II progressively hybrid censored data , 2006, Comput. Stat. Data Anal..

[9]  G. K. Bhattacharyya,et al.  Exact confidence bounds for an exponential parameter under hybrid censoring , 1987 .

[10]  N. Balakrishnan,et al.  Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution , 2003 .

[11]  Debasis Kundu,et al.  On hybrid censored Weibull distribution , 2007 .

[12]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[13]  E. Cramer Balakrishnan, Narayanaswamy ; Aggarwala, Rita: Progressive censoring : theory, methods, and applications / N. Balakrishnan ; Rita Aggarwala. - Boston ; Basel ; Berlin, 2000 , 2000 .

[14]  James O. Berger,et al.  Bayesian Analysis for the Poly-Weibull Distribution , 1993 .

[15]  Luc Devroye,et al.  A simple algorithm for generating random variates with a log-concave density , 1984, Computing.

[16]  Irwin Guttman,et al.  Bayesian analysis of hybrid life tests with exponential failure times , 1987 .

[17]  R. Dykstra,et al.  A Confidence Interval for an Exponential Parameter from a Hybrid Life Test , 1982 .

[18]  Sumit Kumar,et al.  Author's Personal Copy Computational Statistics and Data Analysis on Progressively Censored Competing Risks Data for Weibull Distributions , 2022 .

[19]  Walter Zucchini,et al.  Model Selection , 2011, International Encyclopedia of Statistical Science.

[20]  Debasis Kundu,et al.  Bayesian Inference and Life Testing Plan for the Weibull Distribution in Presence of Progressive Censoring , 2008, Technometrics.

[21]  Debasis Kundu,et al.  On the comparison of Fisher information of the Weibull and GE distributions , 2006 .

[22]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  D. Kundu,et al.  EXPONENTIATED EXPONENTIAL FAMILY: AN ALTERNATIVE TO GAMMA AND WEIBULL DISTRIBUTIONS , 2001 .

[24]  Debasis Kundu,et al.  Inference Based on Type-II Hybrid Censored Data From a Weibull Distribution , 2008, IEEE Transactions on Reliability.

[25]  N. Balakrishnan,et al.  On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data , 2008 .