Fabrication and optimization of Tantalum pentoxide waveguides for optical micro-propulsion

Design, fabrication and optimization of high refractive index (2.1 @ 1070 nm), sub-micron thickness (200 nm) Tantalum Pentoxide waveguides is reported. Optimization of fabrication parameters reduces the propagation loss to ~ 1 dB/cm @ 1070 nm for Ta2O5 waveguides. Ta2O5 waveguides were found to be stable for high power application with no significant absorption peaks over a large range of wavelengths (600-1700 nm). Ta2O5 waveguides provide high intensity in the evanescent field, which is useful for efficient optical propelling of micro-particles. We have employed Ta2O5 waveguide to propel polystyrene micro-particles with 50 μm/s velocity.

[1]  A. Aydınlı,et al.  Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides , 2004 .

[2]  Gert Ludwig Duveneck,et al.  Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids , 2002 .

[3]  James S. Wilkinson,et al.  Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass , 2004 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  N. Sessions,et al.  Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles , 2009, IEEE Photonics Technology Letters.

[6]  J. Autran,et al.  Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications , 1998 .

[7]  G. S. Murugan,et al.  Optical manipulation of microspheres along a subwavelength optical wire. , 2007, Optics letters.

[8]  J Fedeli,et al.  Optical manipulation of microparticles and cells on silicon nitride waveguides. , 2005, Optics express.

[9]  S Kawata,et al.  Optically driven Mie particles in an evanescent field along a channeled waveguide. , 1996, Optics letters.

[10]  M. Yamada,et al.  Ta2O5 thin films with exceptionally high dielectric constant , 1999 .

[11]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[12]  D. Grier,et al.  Sorting mesoscopic objects with periodic potential landscapes: optical fractionation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[14]  James S. Wilkinson,et al.  Integrated platform based on high refractive index contrast waveguide for optical guiding and sorting , 2010, OPTO.

[15]  K. Worhoff,et al.  Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices , 1999 .

[16]  D. Grier A revolution in optical manipulation , 2003, Nature.

[17]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[18]  Kee-Won Kwon,et al.  Thermally Robust Ta2O5 Capacitor for the 256-Mbit DRAM , 1996 .

[19]  Melanie W. Cole,et al.  Influence of postdeposition annealing on the enhanced structural and electrical properties of amorphous and crystalline Ta2O5 thin films for dynamic random access memory applications , 1999 .

[20]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[21]  K. Kukli,et al.  Properties of Ta2 O 5‐Based Dielectric Nanolaminates Deposited by Atomic Layer Epitaxy , 1997 .

[22]  M. Lipson,et al.  Optofluidic trapping and transport on solid core waveguides within a microfluidic device. , 2007, Optics express.

[23]  N.M.B. Perney,et al.  Neodymium-doped tantalum pentoxide waveguide lasers , 2005, IEEE Journal of Quantum Electronics.

[24]  Peter John Rodrigo,et al.  Real-time three-dimensional optical micromanipulation of multiple particles and living cells. , 2004, Optics letters.

[25]  L. Vivien,et al.  Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides , 2004, IEEE Photonics Technology Letters.

[26]  W. Marsden I and J , 2012 .