We demonstrate supercontinuum generation in stoichiometric silicon nitride (Si3N4 in SiO2) integrated optical waveguides, pumped at telecommunication wavelengths. The pump laser is a mode-locked erbium fiber laser at a wavelength of 1.56 μm with a pulse duration of 120 fs. With a waveguide-internal pulse energy of 1.4 nJ and a waveguide with 1.0 μm x 0.9 μm cross section, designed for anomalous dispersion across the 1500 nm telecommunication range, the output spectrum extends from the visible, at around 526 nm, up to the mid-infrared, at least to 2.6 μm, the instrumental limit of our detection. This output spans more than 2.2 octaves (454 THz at the -30 dB level). The measured output spectra agree well with theoretical modeling based on the generalized nonlinear Schrödinger equation. The infrared part of the supercontinuum spectra shifts progressively towards the mid-infrared, well beyond 2.6 μm, by increasing the width of the waveguides. c © 2017 Optical Society of America OCIS codes: (130.0130) Integrated optics; (190.4390) Nonlinear optics, integrated optics; (320.6629) Supercontinuum generation; (190.7110) Ultrafast nonlinear optics. References and links 1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). 2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288, 635–639 (2000). 3. A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann, I. Hartl, and J. Ye, “Ultrabroadband coherent supercontinuum frequency comb,” Phys. Rev. A 84, 011806 (2011). 4. H. Kano and H. Hamaguchi, “Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy,” Opt. Lett. 28, 2360–2362 (2003). 5. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14, 1596–1603 (2006). 6. J. T. Woodward, A. W. Smith, C. A. Jenkins, C. Lin, S. W. Brown, and K. R. Lykke, “Supercontinuum sources for metrology,” Metrologia 46, S277–S282 (2009). Vol. 25, No. 2 | 23 Jan 2017 | OPTICS EXPRESS 1542 #281693 Journal © 2017 http://dx.doi.org/10.1364/OE.25.001542 Received 28 Nov 2016; revised 6 Jan 2017; accepted 8 Jan 2017; published 19 Jan 2017 7. G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660–2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37, 2199–2201 (2012). 8. V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip based optical frequency comb using soliton induced Cherenkov radiation,” Science 351, 357–360 (2016). 9. V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014). 10. T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis,” Opt. Express 23, 22087– 22097 (2015). 11. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, and R.S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003). 12. B. Kuyken, F. Leo, S. Clemmen, U. Dave, R. Van Laer, T. Ideguchi, H. Zhao, X. Liu, J. Safioui, S. Coen, S.P. Gorza, S.K. Selvaraja, S. Massar, R.M. Osgood Jr., P. Verheyen, J. Van Campenhout, R. Baets, W.M.J. Green, G. Roelkens, “Nonlinear optical interactions in silicon waveguides,” Nanophotonics 5, 1–16 (2016). 13. C. Ciret and S-P. Gorza, “Generation of ultra broadband coherent supercontinuum in tapered and dispersion managed silicon nanophotonic waveguides,” arXiv:1610.05665 [physics.optics] (2016). 14. H. Hu, W. Li, N.K. Dutta, “Dispersion-engineered tapered planar waveguide for coherent supercontinuum generation,” Opt. Commun. 324, 252–257 (2014). 15. D. Y. Oh, D. Sell, H. Lee, K. Y. Yang, S. A. Diddams, and K. J. Vahala, “Supercontinuum generation in an on-chip silica waveguide,” Opt. Lett. 39, 1046–1048 (2014). 16. D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18, 923–930 (2010). 17. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685–1687 (2012). 18. J. M. Chavez Boggio, D. Bodenmüller, T. Fremberg, R. Haynes, M. M. Roth, R. Eisermann, M. Lisker, L. Zimmermann, and M. Böhm, “Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization,” J. Opt. Soc. Am. B 31, 2846–2857 (2014). 19. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008). 20. Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photonics Rev. 8, 792–798 (2014). 21. F. Leo, S.-P. Gorza, J. Safioui, P. Kockaert, S. Coen, U. Dave, B. Kuyken, and G. Roelkens, “Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength,” Opt. Lett. 39, 3623–3626 (2014). 22. R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides,” Opt. Lett. 39, 4518–4521 (2014). 23. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picqué, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015). 24. X. Liu, M. Pu, B. Zhou, C. J. Krückel, A. Fülöp, V. Torres-Company, and M. Bache, “Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide,” Opt. Lett. 41, 2719–2722 (2016). 25. F. Morichetti, A. Melloni, M. Martinelli, R. Heideman, A. Leinse, D. Geuzebroek, and A. Borremann, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol. 25, 2579–2589 (2007). 26. R. G. H. Kerstin Wörhoff, “TriPleX: A versatile dielectric photonic platform,” Adv. Opt. Techn. 4, 189–207 (2015). 27. R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett. 10, 015804 (2013). 28. Y. Fan, R. M. Oldenbeuving, E. J. Klein, C. J. Lee, H. Song, M. R. H. Khan, H. L. Offerhaus, P. J. M. van der Slot, and K.-J. Boller, “A hybrid semiconductor-glass waveguide laser,” Proc. SPIE 9135, 91351 (2014). 29. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009). 30. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163-3174 (2011). 31. C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, J. Chae, D. Marpaung, A. Leinse, R. G. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, “Compact and reconfigurable silicon nitride time-bin entanglement circuit,” Optica 2, 724–727 (2015). 32. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19, 23162–23170 (2011). 33. C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, Vol. 25, No. 2 | 23 Jan 2017 | OPTICS EXPRESS 1543
[1]
G. Roelkens,et al.
Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength.
,
2014,
Optics letters.
[2]
N. Dutta,et al.
Dispersion-engineered tapered planar waveguide for coherent supercontinuum generation
,
2014
.
[3]
Kazuhiro Ikeda,et al.
Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides.
,
2008,
Optics express.
[4]
J. Dudley,et al.
Supercontinuum generation in photonic crystal fiber
,
2006
.
[5]
Jörgen Bengtsson,et al.
Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides.
,
2015,
Optics express.
[6]
Gunther Roelkens,et al.
Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide.
,
2015,
Optics letters.
[7]
Chris G. H. Roeloffzen,et al.
Programmable photonic signal processor chip for radiofrequency applications
,
2015,
1505.00094.
[8]
M. Lipson,et al.
Ultrabroadband supercontinuum generation in a CMOS-compatible platform.
,
2012,
Optics letters.
[9]
Binbin Zhou,et al.
Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide
,
2016,
2016 Conference on Lasers and Electro-Optics (CLEO).
[10]
Hong Song,et al.
A hybrid semiconductor-glass waveguide laser
,
2014,
Photonics Europe.
[11]
Ming Yan,et al.
An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide
,
2014,
Nature Communications.
[12]
Hiro-o Hamaguchi,et al.
Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy.
,
2003,
Optics letters.
[13]
M. Lipson,et al.
Broadband mid-infrared frequency comb generation in a Si3N4 microresonator
,
2015,
Conference on Lasers and Electro-Optics.
[14]
Roberto Morandotti,et al.
Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis.
,
2015,
Optics express.
[15]
Scott A. Diddams,et al.
Generation of a 660-2100 nm laser frequency comb based on an erbium fiber laser.
,
2012,
Optics letters.
[16]
Roberto Morandotti,et al.
Supercontinuum generation in a high index doped silica glass spiral waveguide.
,
2010,
Optics express.
[17]
Yi Yu,et al.
A broadband, quasi‐continuous, mid‐infrared supercontinuum generated in a chalcogenide glass waveguide
,
2014
.
[18]
K. Cossel,et al.
Ultrabroadband coherent supercontinuum frequency comb
,
2011,
1105.2093.
[19]
Arne Leinse,et al.
High confinement, high yield Si(3)N(4) waveguides for nonlinear optical applications.
,
2014,
Optics express.
[20]
K. Vahala,et al.
Supercontinuum generation in an on-chip silica waveguide.
,
2014,
Optics letters.
[21]
F. Wise,et al.
Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide.
,
2015,
Optics letters.
[22]
A. Leinse,et al.
On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth.
,
2015,
Optics express.
[23]
Carsten Fallnich,et al.
Nonlinear dynamics of femtosecond supercontinuum generation with feedback.
,
2009,
Optics express.
[24]
R. Oldenbeuving,et al.
25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity
,
2012,
1204.0353.
[25]
Ali Adibi,et al.
High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler.
,
2015,
Optics express.
[26]
S. Massar,et al.
Nonlinear optical interactions in silicon waveguides
,
2017
.
[27]
A. Leinse,et al.
TriPleX: a versatile dielectric photonic platform
,
2015
.
[28]
A. Leinse,et al.
Ultra-broadband supercontinuum generation at telecommunication wavelengths in dispersion engineered stoichiometric Si3N4 waveguides
,
2016,
2016 Conference on Lasers and Electro-Optics (CLEO).
[29]
Ilaria Cristiani,et al.
Dispersive wave generation by solitons in microstructured optical fibers.
,
2004,
Optics express.
[30]
R. Haynes,et al.
Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization
,
2014,
1409.7810.
[31]
M. Lipson,et al.
Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides.
,
2014,
Optics letters.
[32]
Karlsson,et al.
Cherenkov radiation emitted by solitons in optical fibers.
,
1995,
Physical review. A, Atomic, molecular, and optical physics.
[33]
R. Windeler,et al.
Fundamental noise limitations to supercontinuum generation in microstructure fiber.
,
2002,
Physical review letters.
[34]
Hidemi Shigekawa,et al.
Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber
,
2001
.
[35]
Michal Lipson,et al.
Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides.
,
2016,
Optics express.
[36]
C. Hsiao,et al.
Improving optical properties of silicon nitride films to be applied in the middle infrared optics by a combined high-power impulse/unbalanced magnetron sputtering deposition technique.
,
2014,
Applied optics.
[37]
C. Roeloffzen,et al.
Compact and reconfigurable silicon nitride time-bin entanglement circuit
,
2015,
1506.02758.
[38]
T. Hansson,et al.
Dispersion-optimized multicladding silicon nitride waveguides for nonlinear frequency generation from ultraviolet to mid-infrared
,
2016
.
[39]
Hall,et al.
Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis
,
2000,
Science.
[40]
Tobias Herr,et al.
Photonic chip based optical frequency comb using soliton induced Cherenkov radiation
,
2015,
CLEO 2015.
[41]
Michal Lipson,et al.
High confinement micron-scale silicon nitride high Q ring resonator.
,
2009,
Optics express.