Oxygen-Migration-Based Spintronic Device Emulating a Biological Synapse

[1]  A. Thomas,et al.  The Memristive Magnetic Tunnel Junction as a Nanoscopic Synapse‐Neuron System , 2012, Advanced materials.

[2]  Hyunsoo Yang,et al.  Electric-field control of spin accumulation direction for spin-orbit torques , 2019, Nature Communications.

[3]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[4]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[5]  Qiangfei Xia,et al.  Review of memristor devices in neuromorphic computing: materials sciences and device challenges , 2018, Journal of Physics D: Applied Physics.

[6]  Jianhui Zhao,et al.  Memristor with Ag‐Cluster‐Doped TiO2 Films as Artificial Synapse for Neuroinspired Computing , 2018 .

[7]  R. Ouedraogo,et al.  Three-terminal resistive switch based on metal/metal oxide redox reactions , 2017, Scientific Reports.

[8]  H.-S. Philip Wong,et al.  Face classification using electronic synapses , 2017, Nature Communications.

[9]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[10]  Jun Tao,et al.  Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing. , 2018, ACS nano.

[11]  I. Young,et al.  Beyond CMOS computing with spin and polarization , 2018 .

[12]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[13]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[14]  Wei Lu,et al.  Short-term Memory to Long-term Memory Transition in a Nanoscale Memristor , 2022 .

[15]  Ali Khiat,et al.  Real-time encoding and compression of neuronal spikes by metal-oxide memristors , 2016, Nature Communications.

[16]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[17]  Subhasish Mitra,et al.  Three-dimensional integration of nanotechnologies for computing and data storage on a single chip , 2017, Nature.

[18]  Zhaohao Wang,et al.  Spintronics , 2015, ACM J. Emerg. Technol. Comput. Syst..

[19]  H. Hwang,et al.  Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device , 2011, Nanotechnology.

[20]  Shufeng Zhang,et al.  Reversible control of Co magnetism by voltage-induced oxidation. , 2014, Physical review letters.

[21]  Nicolas Locatelli,et al.  Learning through ferroelectric domain dynamics in solid-state synapses , 2017, Nature Communications.

[22]  H. Almasi,et al.  Metal Based Nonvolatile Field‐Effect Transistors , 2016 .

[23]  V. Cros,et al.  Spin-torque building blocks. , 2014, Nature Materials.

[24]  Kaushik Roy,et al.  Proposal for an All-Spin Artificial Neural Network: Emulating Neural and Synaptic Functionalities Through Domain Wall Motion in Ferromagnets , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[25]  D. Jeong,et al.  Memristors for Energy‐Efficient New Computing Paradigms , 2016 .

[26]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[27]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[28]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[29]  Wei Lu,et al.  Biorealistic Implementation of Synaptic Functions with Oxide Memristors through Internal Ionic Dynamics , 2015 .

[30]  Uwe Bauer,et al.  Magneto-ionic control of interfacial magnetism. , 2014, Nature materials.

[31]  Ali Khiat,et al.  Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses , 2016, Nature Communications.

[32]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[33]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[34]  Shimeng Yu,et al.  Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems. , 2014, ACS nano.

[35]  S. Yuasa,et al.  A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy , 2016, Scientific Reports.

[36]  Damien Querlioz,et al.  Neuromorphic computing with nanoscale spintronic oscillators , 2017, Nature.

[37]  Uwe Bauer,et al.  Voltage-controlled domain wall traps in ferromagnetic nanowires. , 2013, Nature nanotechnology.

[38]  Dmitri B Strukov,et al.  Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability , 2017, Nature Communications.

[39]  Yoshihiko Horio,et al.  Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation , 2016 .

[40]  Y. Liu,et al.  Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor , 2012 .

[41]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[42]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[43]  Sumio Hosaka,et al.  Emulating the Ebbinghaus forgetting curve of the human brain with a NiO-based memristor , 2013 .