Optimal pole arrangement design of a linear switched-reluctance machine for magnetic levitation and propulsion system

This paper will provide an optimal pole arrangement design scheme of a switched-reluctance machine that is applicable for magnetic levitated vehicle (MAGLEV) system. The proposed low-cost machine structure will be able to supply both the levitation and the propulsion forces simultaneously. Minimum torque generation and smooth switch operation in the entire operation range have been selected as the design objectives subjected to the available machine bogie and electromagnet sizes. Comparison studies on the system electromagnetic and electromechanical characteristics will be provided to verify the adequacy of the proposed design scheme.