Antiepileptic drugs and muscarinic receptor-dependent excitation in the rat subiculum

[1]  O. Beck,et al.  Determination of Lamotrigine and its Metabolites in Human Plasma by Liquid Chromatography-Mass Spectrometry , 2006, Therapeutic drug monitoring.

[2]  B. MacVicar,et al.  Muscarinic Enhancement of R-Type Calcium Currents in Hippocampal CA1 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[3]  Massimo Avoli,et al.  Rat subicular networks gate hippocampal output activity in an in vitro model of limbic seizures , 2005, The Journal of physiology.

[4]  B. MacVicar,et al.  Topiramate Inhibits the Initiation of Plateau Potentials in CA1 Neurons by Depressing R‐type Calcium Channels , 2005, Epilepsia.

[5]  G. Holmes,et al.  Mechanisms of Action for the Commonly Used Antiepileptic Drugs: Relevance to Antiepileptic Drug-Associated Neurobehavioral Adverse Effects , 2004, Journal of child neurology.

[6]  Wolfgang Löscher,et al.  The neurobiology of antiepileptic drugs , 2004, Nature Reviews Neuroscience.

[7]  M. Rogawski,et al.  Selective Antagonism of GluR5 Kainate-Receptor-Mediated Synaptic Currents by Topiramate in Rat Basolateral Amygdala Neurons , 2003, The Journal of Neuroscience.

[8]  Marco de Curtis,et al.  Slow periodic events and their transition to gamma oscillations in the entorhinal cortex of the isolated Guinea pig brain. , 2003, Journal of neurophysiology.

[9]  M. Brodie,et al.  Topiramate and Lamotrigine Pharmacokinetics during Repetitive Monotherapy and Combination Therapy in Epilepsy Patients , 2003, Epilepsia.

[10]  T. Freund,et al.  Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine‐induced seizures , 2003, The Journal of comparative neurology.

[11]  Eleonora Aronica,et al.  Neuronal Cell Death in a Rat Model for Mesial Temporal Lobe Epilepsy Is Induced by the Initial Status Epilepticus and Not by Later Repeated Spontaneous Seizures , 2003, Epilepsia.

[12]  R. Lester,et al.  Interactions of atropine with heterologously expressed and native α3 subunit‐containing nicotinic acetylcholine receptors , 2003, British journal of pharmacology.

[13]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[14]  John L. Musachio,et al.  Measuring nicotinic receptors with characteristics of α4β2, α3β2 and α3β4 subtypes in rat tissues by autoradiography , 2002 .

[15]  M. Avoli,et al.  Neocortical Potassium Currents Are Enhanced by the Antiepileptic Drug Lamotrigine , 2002, Epilepsia.

[16]  R. Post,et al.  Lamotrigine reduces spontaneous and evoked GABAA receptor-mediated synaptic transmission in the basolateral amygdala: implications for its effects in seizure and affective disorders Lamotrigine and inhibition in the amygdala , 2002, Neuropharmacology.

[17]  J. Solís,et al.  Two new actions of topiramate: inhibition of depolarizing GABAA-mediated responses and activation of a potassium conductance , 2002, Neuropharmacology.

[18]  M. Avoli,et al.  Network and intrinsic contributions to carbachol-induced oscillations in the rat subiculum. , 2001, Journal of neurophysiology.

[19]  Mark O. Cunningham,et al.  The anticonvulsant, lamotrigine decreases spontaneous glutamate release but increases spontaneous GABA release in the rat entorhinal cortex in vitro , 2000, Neuropharmacology.

[20]  P. Carlen,et al.  Antiepileptic efficacy of topiramate: assessment in two in vitro seizure models , 2000, Brain Research.

[21]  M. Avoli,et al.  Topiramate depresses carbachol‐induced plateau potentials in subicular bursting cells , 2000, Neuroreport.

[22]  S. Sombati,et al.  Effects of Topiramate on Sustained Repetitive Firing and Spontaneous Recurrent Seizure Discharges in Cultured Hippocampal Neurons , 2000, Epilepsia.

[23]  M. McLean,et al.  Effects of Topiramate on Sodium‐Dependent Action‐Potential Firing by Mouse Spinal Cord Neurons in Cell Culture , 2000, Epilepsia.

[24]  S. Sombati,et al.  Cellular Actions of Topiramate: Blockade of Kainate‐Evoked Inward Currents in Cultured Hippocampal Neurons , 2000, Epilepsia.

[25]  M. Avoli,et al.  Muscarinic receptor activation induces depolarizing plateau potentials in bursting neurons of the rat subiculum. , 1999, Journal of neurophysiology.

[26]  J. Szaflarski,et al.  Complex partial seizures in adults , 1999, Current treatment options in neurology.

[27]  M. Baulac,et al.  In vivo imaging of muscarinic cholinergic receptors in temporal lobe epilepsy with a new PET tracer: [76Br]4-bromodexetimide. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[28]  G. Avanzini,et al.  Inhibition of transient and persistent Na+ current fractions by the new anticonvulsant topiramate. , 1999, The Journal of pharmacology and experimental therapeutics.

[29]  A. Korczyn,et al.  Comparison of the effects of vigabatrin, lamotrigine, and topiramate on quantitative EEGs in patients with epilepsy. , 1999, Clinical neuropharmacology.

[30]  G Bernardi,et al.  An in vitro electrophysiological study on the effects of phenytoin, lamotrigine and gabapentin on striatal neurons , 1999, British journal of pharmacology.

[31]  M. Avoli,et al.  Multiple actions of the novel anticonvulsant drug topiramate in the rat subiculum in vitro , 1998, Brain Research.

[32]  P. Rutecki,et al.  Ictal epileptiform activity in the CA3 region of hippocampal slices produced by pilocarpine. , 1998, Journal of neurophysiology.

[33]  M. Avoli,et al.  Sodium channels as molecular targets for antiepileptic drugs , 1998, Brain Research Reviews.

[34]  H. Vijverberg,et al.  Potentiation and inhibition of neuronal nicotinic receptors by atropine: competitive and noncompetitive effects. , 1997, Molecular pharmacology.

[35]  S. Brown,et al.  Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold , 1997, Epilepsy Research.

[36]  A. Alonso,et al.  Muscarinic Induction of Synchronous Population Activity in the Entorhinal Cortex , 1997, The Journal of Neuroscience.

[37]  M. Avoli,et al.  Topiramate attenuates voltage-gated sodium currents in rat cerebellar granule cells , 1997, Neuroscience Letters.

[38]  C. Zona,et al.  Lamotrigine Reduces Voltage‐Gated Sodium Currents in Rat Central Neurons in Culture , 1997, Epilepsia.

[39]  A. Alonso,et al.  Ionic mechanisms of muscarinic depolarization in entorhinal cortex layer II neurons. , 1997, Journal of neurophysiology.

[40]  G. Pledger,et al.  Topiramate Monotherapy for Partial Onset Seizures , 1997, Epilepsia.

[41]  C. Rowe,et al.  Localization of temporal lobe epileptic foci with iodine-123 iododexetimide cholinergic neuroreceptor single-photon emission computed tomography , 1996, Neurology.

[42]  G. Pledger,et al.  Double‐Blind, Placebo‐Controlled Trial of Topiramate (600 mg Daily) for the Treatment of Refractory Partial Epilepsy , 1996, Epilepsia.

[43]  D. D. Fraser,et al.  Cholinergic-Dependent Plateau Potential in Hippocampal CA1 Pyramidal Neurons , 1996, The Journal of Neuroscience.

[44]  A. Wauquier,et al.  Topiramate: a potent anticonvulsant in the amygdala-kindled rat , 1996, Epilepsy Research.

[45]  A. Alonso,et al.  Epileptiform activity induced by pilocarpine in the rat hippocampal-entorhinal slice preparation , 1996, Neuroscience.

[46]  L. Pullan,et al.  Neurotherapeutics: Emerging Strategies , 1995 .

[47]  John Garthwaite,et al.  Interaction of the antiepileptic drug lamotrigine with recombinant rat brain type IIA Na+ channels and with native Na+ channels in rat hippocampal neurones , 1995, Pflügers Archiv.

[48]  R. McLachlan,et al.  Cholinergic Mechanisms in Generalized Seizures: Importance of the Zona Incerta , 1995, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[49]  J. Gilman Lamotrigine: an Anhepileptic Agent for the Treatment of Partial Seizures , 1995, The Annals of pharmacotherapy.

[50]  C. B. Davis,et al.  Topiramate: Preclinical Evaluation of a Structurally Novel Anticonvulsant , 1994, Epilepsia.

[51]  P. Gloor,et al.  Quantitative evaluation of neuronal loss in the dorsal hippocampus in rats with long-term pilocarpine seizures , 1994, Epilepsy Research.

[52]  T. Babb,et al.  Circuit Mechanisms of Seizures in the Pilocarpine Model of Chronic Epilepsy: Cell Loss and Mossy Fiber Sprouting , 1993, Epilepsia.

[53]  M. Avoli,et al.  Membrane properties of rat subicular neurons in vitro. , 1993, Journal of neurophysiology.

[54]  R K Wong,et al.  Intrinsic properties and evoked responses of guinea pig subicular neurons in vitro. , 1993, Journal of neurophysiology.

[55]  E. Harris,et al.  An in vitro investigation of the action of lamotrigine on neuronal voltage-activated sodium channels , 1992, Epilepsy Research.

[56]  R. Inoue Effect of external Cd2+ and other divalent cations on carbachol‐activated non‐selective cation channels in guinea‐pig ileum. , 1991, The Journal of physiology.

[57]  P. Pacaud,et al.  Relation between muscarinic receptor cationic current and internal calcium in guinea‐pig jejunal smooth muscle cells. , 1991, The Journal of physiology.

[58]  F. H. Lopes da Silva,et al.  Anatomic organization and physiology of the limbic cortex. , 1990, Physiological reviews.

[59]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[60]  D. Cain Excitatory neurotransmitters in kindling: Excitatory amino acid, cholinergic, and opiate mechanisms , 1989, Neuroscience & Biobehavioral Reviews.

[61]  F. W. Tse,et al.  Local neuronal circuitry underlying cholinergic rhythmical slow activity in CA3 area of rat hippocampal slices. , 1989, The Journal of physiology.

[62]  C. Davies,et al.  Cholinergic modulation of hippocampal cells and circuits , 2005, The Journal of physiology.

[63]  M. Stewart,et al.  Differential modulation by carbachol of four separate excitatory afferent systems to the rat subiculum in vitro , 2004, Hippocampus.

[64]  J. Taube Electrophysiological properties of neurons in the rat subiculum in vitro , 2004, Experimental Brain Research.

[65]  L. Chiodo,et al.  Statistical analysis of dose‐response curves in extracellular electrophysiological studies of single neurons , 1990, Synapse.

[66]  J. Halliwell Physiological mechanisms of cholinergic action in the hippocampus. , 1990, Progress in brain research.

[67]  Z. Bortolotto,et al.  Review: Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: A novel experimental model of intractable epilepsy , 1989, Synapse.

[68]  H. Cullumbine A – Muscarinic Blocking Drugs , 1967 .