RADICL-seq identifies general and cell type–specific principles of genome-wide RNA-chromatin interactions

Mammalian genomes encode tens of thousands of noncoding RNAs. Most noncoding transcripts exhibit nuclear localization and several have been shown to play a role in the regulation of gene expression and chromatin remodeling. To investigate the function of such RNAs, methods to massively map the genomic interacting sites of multiple transcripts have been developed; however, these methods have some limitations. Here, we introduce RNA And DNA Interacting Complexes Ligated and sequenced (RADICL-seq), a technology that maps genome-wide RNA–chromatin interactions in intact nuclei. RADICL-seq is a proximity ligation-based methodology that reduces the bias for nascent transcription, while increasing genomic coverage and unique mapping rate efficiency compared with existing methods. RADICL-seq identifies distinct patterns of genome occupancy for different classes of transcripts as well as cell type–specific RNA-chromatin interactions, and highlights the role of transcription in the establishment of chromatin structure. Mammalian genomes encode tens of thousands of ncRNAs that have important roles in regulation of gene expression and chromatin organization. Here, the authors present RADICLseq to map RNA-chromatin interactions in intact nuclei to shed light on these fine-tuned processes.

[1]  Carsten O. Daub,et al.  MOIRAI: a compact workflow system for CAGE analysis , 2014, BMC Bioinformatics.

[2]  J. Kjems,et al.  A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo. , 2008, Molecules and Cells.

[3]  G. Schroth,et al.  Cohesin-mediated interactions organize chromosomal domain architecture , 2013, The EMBO journal.

[4]  I. Costa,et al.  Isolation and genome-wide characterization of cellular DNA:RNA triplex structures , 2019, Nucleic acids research.

[5]  Ivan G Costa,et al.  Detection of RNA–DNA binding sites in long noncoding RNAs , 2019, Nucleic acids research.

[6]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[7]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[8]  Philip A. Ewels,et al.  HiCUP: pipeline for mapping and processing Hi-C data , 2015, F1000Research.

[9]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[10]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[11]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[12]  Tetsushi Sakuma,et al.  Stochastic promoter activation affects Nanog expression variability in mouse embryonic stem cells , 2014, Scientific Reports.

[13]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[14]  G. Carmichael,et al.  Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. , 2009, Molecular cell.

[15]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[16]  Howard Y. Chang,et al.  7SK-BAF axis controls pervasive transcription at enhancers , 2016, Nature Structural &Molecular Biology.

[17]  A. Bacolla,et al.  New Perspectives on DNA and RNA Triplexes As Effectors of Biological Activity , 2015, PLoS genetics.

[18]  Max W. Chang,et al.  Transcription Elongation Can Affect Genome 3D Structure , 2018, Cell.

[19]  Howard Y. Chang,et al.  Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. , 2011, Molecular cell.

[20]  T. Cech,et al.  How do lncRNAs regulate transcription? , 2017, Science Advances.

[21]  Shilin Chen,et al.  FastUniq: A Fast De Novo Duplicates Removal Tool for Paired Short Reads , 2012, PloS one.

[22]  N. Goshima,et al.  Alternative 3′‐end processing of long noncoding RNA initiates construction of nuclear paraspeckles , 2012, The EMBO journal.

[23]  J. Heath,et al.  Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. Bartel,et al.  Excised linear introns regulate growth in yeast , 2018, Nature.

[25]  Roland Eils,et al.  circlize implements and enhances circular visualization in R , 2014, Bioinform..

[26]  Piero Carninci,et al.  5′ end–centered expression profiling using cap-analysis gene expression and next-generation sequencing , 2012, Nature Protocols.

[27]  Jesse M. Engreitz,et al.  Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression , 2016, Nature Reviews Molecular Cell Biology.

[28]  Piero Carninci,et al.  RNA Dust: Where are the Genes? , 2010, DNA research : an international journal for rapid publication of reports on genes and genomes.

[29]  Boris Lenhard,et al.  CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses , 2015, Nucleic acids research.

[30]  V. Haroutunian,et al.  The expression of long noncoding RNA NEAT1 is reduced in schizophrenia and modulates oligodendrocytes transcription , 2019, npj Schizophrenia.

[31]  A. Tanay,et al.  Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture , 2011, Nature Genetics.

[32]  Kevin C. Wang,et al.  Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments , 2018, Nature Genetics.

[33]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[34]  B. Tabak,et al.  Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus , 2018, Cell.

[35]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[36]  Jan M Skotheim,et al.  Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts , 2017, bioRxiv.

[37]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[38]  A. Aguzzi,et al.  Lines of Murine Oligodendroglial Precursor Cells Immortalized by an Activated neu Tyrosine Kinase Show Distinct Degrees of Interaction with Axons In Vitro and In Vivo , 1995, The European journal of neuroscience.

[39]  Hanbo Chen,et al.  VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R , 2011, BMC Bioinformatics.

[40]  Kristian Vlahovicek,et al.  Genomation: a Toolkit to Summarize, Annotate and Visualize Genomic Intervals , 2015, Bioinform..

[41]  J. Lawrence,et al.  Stable C0T-1 Repeat RNA Is Abundant and Is Associated with Euchromatic Interphase Chromosomes , 2014, Cell.

[42]  Jonathan M. Mudge,et al.  Creating reference gene annotation for the mouse C57BL6/J genome assembly , 2015, Mammalian Genome.

[43]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[44]  A. Sandelin,et al.  Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance , 2014, Nature Genetics.

[45]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[46]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[47]  Sharon R Grossman,et al.  RNA-RNA Interactions Enable Specific Targeting of Noncoding RNAs to Nascent Pre-mRNAs and Chromatin Sites , 2014, Cell.

[48]  Brad A Chapman,et al.  The genomic binding sites of a noncoding RNA , 2011, Proceedings of the National Academy of Sciences.

[49]  Anthony D. Schmitt,et al.  Genome-wide mapping and analysis of chromosome architecture , 2016, Nature Reviews Molecular Cell Biology.

[50]  Steven J. M. Jones,et al.  MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures , 2015, Nature Communications.

[51]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[52]  William Stafford Noble,et al.  Bipartite structure of the inactive mouse X chromosome , 2015, Genome Biology.

[53]  John N. Hutchinson,et al.  An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. , 2009, Molecular cell.

[54]  E. Lander,et al.  The Xist lncRNA Exploits Three-Dimensional Genome Architecture to Spread Across the X Chromosome , 2013, Science.

[55]  William Stafford Noble,et al.  Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts , 2014, Genome research.

[56]  E. Lander,et al.  Local regulation of gene expression by lncRNA promoters, transcription and splicing , 2016, Nature.

[57]  Bing Zhou,et al.  GRID-seq reveals the global RNA-chromatin interactome , 2017, Nature Biotechnology.

[58]  A. Tanay,et al.  Multiscale 3D Genome Rewiring during Mouse Neural Development , 2017, Cell.

[59]  K. Morris,et al.  The rise of regulatory RNA , 2014, Nature Reviews Genetics.

[60]  Xiaoyi Cao,et al.  Systematic Mapping of RNA-Chromatin Interactions In Vivo , 2017, Current Biology.

[61]  Geoffrey J Faulkner,et al.  A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. , 2008, Genomics.

[62]  Michael Y Tolstorukov,et al.  The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. , 2014, Molecular cell.

[63]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[64]  Borbala Mifsud,et al.  GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data , 2017, PloS one.

[65]  Carsten O. Daub,et al.  TagDust—a program to eliminate artifacts from next generation sequencing data , 2009, Bioinform..

[66]  Timo Lassmann,et al.  TagDust2: a generic method to extract reads from sequencing data , 2015, BMC Bioinformatics.

[67]  Philip A. Ewels,et al.  HiCUP: pipeline for mapping and processing Hi-C data , 2015, F1000Research.

[68]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[69]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[70]  Xiaoqin Xu,et al.  Prevalent, Dynamic, and Conserved R-Loop Structures Associate with Specific Epigenomic Signatures in Mammals. , 2016, Molecular cell.