Partial Consistency with Sparse Incidental Parameters.
暂无分享,去创建一个
[1] M. Kosorok,et al. Likelihood based inference for current status data on a grid: A boundary phenomenon and an adaptive inference procedure , 2012, 1205.6055.
[2] J. Jahn. Introduction to the Theory of Nonlinear Optimization , 1994 .
[3] Martin Raič,et al. Normal Approximation by Stein ’ s Method , 2003 .
[4] M. Kosorok. Introduction to Empirical Processes and Semiparametric Inference , 2008 .
[5] Jianqing Fan,et al. A Selective Overview of Variable Selection in High Dimensional Feature Space. , 2009, Statistica Sinica.
[6] J. Neyman,et al. Consistent Estimates Based on Partially Consistent Observations , 1948 .
[7] Yang Feng,et al. A road to classification in high dimensional space: the regularized optimal affine discriminant , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[8] Laurent Zwald,et al. Robust regression through the Huber’s criterion and adaptive lasso penalty , 2011 .
[9] Marcelo J. Moreira. A Maximum Likelihood Method for the Incidental Parameter Problem , 2008, 0909.0613.
[10] Elizabeth L. Scott,et al. Consistent Estimates Based on Partially Consistent Observations Author ( s ) : , 2007 .
[11] T. Lancaster. The incidental parameter problem since 1948 , 2000 .
[12] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[13] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[14] Thomas P. Wihler,et al. On the Hölder Continuity of Matrix Functions for Normal Matrices , 2009 .
[15] Noureddine El Karoui,et al. Penalized robust regression in high-dimension , 2011 .
[16] J. Kiefer,et al. CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS , 1956 .
[17] Jianqing Fan,et al. Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.
[18] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[19] J. Ghosh. Elimination of Nuisance Parameters , 1988 .
[20] Jianqing Fan,et al. High Dimensional Covariance Matrix Estimation in Approximate Factor Models , 2011, Annals of statistics.
[21] Stephen Portnoy,et al. A Robust Journey in the New Millennium , 2000 .
[22] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[23] Jianqing Fan,et al. ADAPTIVE ROBUST VARIABLE SELECTION. , 2012, Annals of statistics.
[24] G. Stewart. On the Continuity of the Generalized Inverse , 1969 .
[25] Clifford Lam. High‐dimensional covariance matrix estimation , 2019, WIREs Computational Statistics.
[26] P. J. Huber. Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .