An Active Double-Balanced Down-Conversion Mixer in InP/Si BICMOS Operating from 70-110 GHz

In this paper, a double-balanced Gilbert cell down-conversion mixer is demonstrated from 70-110 GHz. The wide bandwidth and high frequency are enabled by the HRL InP/Si BiCMOS process. With an fT of 300 GHz, the available 0.25 μm InP HBTs are used in the signal path while the 90 nm CMOS devices are used for biasing and gain adjustment. The fully differential circuit is implemented using two on-chip Marchand baluns feeding both the LO and RF ports. An IF buffer follows the mixer to improve matching and signal quality for testing. After de-embedding the balun and IF buffer, the mixer core achieves a peak conversion gain of 13 dB, a minimum DSB NF of 10 dB, and an OP1dB of -2 dBm while consuming 5 mA from a 3.3 V supply.

[1]  A. Jebril,et al.  Perspectives of W-Band for Space Communications , 2007, 2007 IEEE Aerospace Conference.

[2]  Mark J. Rosker,et al.  The DARPA COSMOS program: The convergence of InP and Silicon CMOS technologies for high-performance mixed-signal , 2010, 2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM).

[3]  Joy Laskar,et al.  W-band double-balanced down-conversion mixer with marchand baluns in silicon-germanium technology , 2009 .

[4]  P. Garcia,et al.  A Wideband W-Band Receiver Front-End in 65-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[5]  T. Iwasaki,et al.  Active MMW Imaging System using the Frequency-Encoding Technique , 2007, 2007 Korea-Japan Microwave Conference.

[6]  J.F. Jensen,et al.  100 GHz+ Gain-Bandwidth Differential Amplifiers in a Wafer Scale Heterogeneously Integrated Technology Using 250 nm InP DHBTs and 130 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[7]  Gabriel M. Rebeiz,et al.  A 90–100-GHz Phased-Array Transmit/Receive Silicon RFIC Module With Built-In Self-Test , 2013, IEEE Transactions on Microwave Theory and Techniques.

[8]  Y. Royter,et al.  A wide-bandwidth W-band LNA in InP/Si BiCMOS technology , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[9]  S.K. Reynolds,et al.  77 and 94-GHz Downconversion Mixers in SiGe BiCMOS , 2006, 2006 IEEE Asian Solid-State Circuits Conference.

[10]  A.C. Chen,et al.  Development of low-loss broad-band planar baluns using multilayered organic thin films , 2005, IEEE Transactions on Microwave Theory and Techniques.

[11]  Jenshan Lin,et al.  A 68-82 GHz integrated wideband linear receiver using 0.18 µm SiGe BiCMOS , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[12]  Helmut Essen,et al.  A versatile, miniaturized high Performance W-Band Radar , 2009, 2009 German Microwave Conference.

[13]  Joy Laskar,et al.  Modern receiver front-ends , 2004 .

[14]  M. Sokolich,et al.  Heterogeneous wafer-scale integration of 250nm, 300GHz InP DHBTs with a 130nm RF-CMOS technology , 2008, 2008 IEEE International Electron Devices Meeting.

[15]  J. Powell,et al.  SiGe Receiver Front Ends for Millimeter-Wave Passive Imaging , 2008, IEEE Transactions on Microwave Theory and Techniques.

[16]  K. O. Kenneth,et al.  W-Band Active Down-Conversion Mixer in Bulk CMOS , 2009, IEEE Microwave and Wireless Components Letters.